IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v155y2021ics0301421521002445.html
   My bibliography  Save this article

Macroeconomic effect of energy transition to carbon neutrality: Evidence from China's coal capacity cut policy

Author

Listed:
  • Zhang, Yanfang
  • Shi, Xunpeng
  • Qian, Xiangyan
  • Chen, Sai
  • Nie, Rui

Abstract

While the retirement of fossil fuel capacity is an inevitable consequence of the energy transition to carbon neutrality, policymakers face challenges in setting the pace in order that the energy transition policies do not significantly damage the economy. This paper designs a dynamic stochastic general equilibrium (DSGE) model to examine the macroeconomic effects of coal capacity cut policy (CCP) shocks on the Chinese economy. The results show that: firstly, an energy policy shock can distort the transmission effect of coal supply and demand and other factors on coal prices. Secondly, the impact of different policy tools is significantly different on the macroeconomic system, in which the economic effect of advanced capacity replacement is the weakest. Thirdly, in the short term, no matter which policy tool is adopted, the CCP will inevitably lead to a reduction in social welfare levels. The study suggests that in the short term, the Chinese government can further release more replacement quotas of capacity with advanced production efficiency, and innovate other policy tools for coal industrial structural optimization and synergistic effects with environmental regulation. In addition, the results highlight the need for market mechanisms to further accelerate the energy transition over the long run.

Suggested Citation

  • Zhang, Yanfang & Shi, Xunpeng & Qian, Xiangyan & Chen, Sai & Nie, Rui, 2021. "Macroeconomic effect of energy transition to carbon neutrality: Evidence from China's coal capacity cut policy," Energy Policy, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:enepol:v:155:y:2021:i:c:s0301421521002445
    DOI: 10.1016/j.enpol.2021.112374
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521002445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ben S. Bernanke & Mark Gertler & Mark Watson, 1997. "Systematic Monetary Policy and the Effects of Oil Price Shocks," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 28(1), pages 91-157.
    2. Ignazio Angeloni & Luc Aucremanne & Michael Ehrmann & Jordi Galí & Andrew Levin & Frank Smets, 2006. "New Evidence on Inflation Persistence and Price Stickiness in the Euro Area: Implications for Macro Modeling," Journal of the European Economic Association, MIT Press, vol. 4(2-3), pages 562-574, 04-05.
    3. Mark Gertler & Jordi Gali & Richard Clarida, 1999. "The Science of Monetary Policy: A New Keynesian Perspective," Journal of Economic Literature, American Economic Association, vol. 37(4), pages 1661-1707, December.
    4. Tumen, Semih & Unalmis, Deren & Unalmis, Ibrahim & Unsal, D. Filiz, 2016. "Taxing fossil fuels under speculative storage," Energy Economics, Elsevier, vol. 53(C), pages 64-75.
    5. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    6. Ireland, Peter N., 2003. "Endogenous money or sticky prices?," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1623-1648, November.
    7. Peter N. Ireland, 2004. "Technology Shocks in the New Keynesian Model," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 923-936, November.
    8. Dixit, Avinash K & Stiglitz, Joseph E, 1977. "Monopolistic Competition and Optimum Product Diversity," American Economic Review, American Economic Association, vol. 67(3), pages 297-308, June.
    9. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    10. Wang, Xiaofei & Liu, Chuangeng & Chen, Shaojie & Chen, Lei & Li, Ke & Liu, Na, 2020. "Impact of coal sector’s de-capacity policy on coal price," Applied Energy, Elsevier, vol. 265(C).
    11. Aminu, Nasir, 2019. "Energy prices volatility and the United Kingdom: Evidence from a dynamic stochastic general equilibrium model," Energy, Elsevier, vol. 172(C), pages 487-497.
    12. John Livernois, 2009. "On the Empirical Significance of the Hotelling Rule," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 3(1), pages 22-41, Winter.
    13. Finn, Mary G, 2000. "Perfect Competition and the Effects of Energy Price Increases on Economic Activity," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 32(3), pages 400-416, August.
    14. Robert S. Pindyck, 1980. "Energy Price Increases and Macroeconomic Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-20.
    15. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    16. Zhang, Yanfang & Nie, Rui & Shi, Xunpeng & Qian, Xiangyan & Wang, Ke, 2019. "Can energy-price regulations smooth price fluctuations? Evidence from China’s coal sector," Energy Policy, Elsevier, vol. 128(C), pages 125-135.
    17. Peter N. Ireland, 2011. "A New Keynesian Perspective on the Great Recession," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(1), pages 31-54, February.
    18. Sun, Qi & Xu, Lin & Yin, Hua, 2016. "Energy pricing reform and energy efficiency in China: Evidence from the automobile market," Resource and Energy Economics, Elsevier, vol. 44(C), pages 39-51.
    19. Li, Xiaoyu & Yao, Xilong, 2020. "Can energy supply-side and demand-side policies for energy saving and emission reduction be synergistic?--- A simulated study on China's coal capacity cut and carbon tax," Energy Policy, Elsevier, vol. 138(C).
    20. Lutz Kilian & Robert J. Vigfusson, 2011. "Are the responses of the U.S. economy asymmetric in energy price increases and decreases?," Quantitative Economics, Econometric Society, vol. 2(3), pages 419-453, November.
    21. Ju, Keyi & Su, Bin & Zhou, Dequn & Wu, Junmin, 2017. "Does energy-price regulation benefit China's economy and environment? Evidence from energy-price distortions," Energy Policy, Elsevier, vol. 105(C), pages 108-119.
    22. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    23. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    24. Xunpeng Shi & Yifan Shen & Ke Wang & Yanfang Zhang, 2021. "Capacity Permit Trading Scheme, Economic Welfare And Energy Insecurity: Case Study Of Coal Industry In China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 66(02), pages 369-389, March.
    25. Fabio Canova, 2009. "What Explains The Great Moderation in the U.S.? A Structural Analysis," Journal of the European Economic Association, MIT Press, vol. 7(4), pages 697-721, June.
    26. Shi, Xunpeng & Rioux, Bertrand & Galkin, Philipp, 2018. "Unintended consequences of China’s coal capacity cut policy," Energy Policy, Elsevier, vol. 113(C), pages 478-486.
    27. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    28. Zhang, Yanfang & Zhang, Ming & Liu, Yue & Nie, Rui, 2017. "Enterprise investment, local government intervention and coal overcapacity: The case of China," Energy Policy, Elsevier, vol. 101(C), pages 162-169.
    29. Cui, Herui & Wei, Pengbang, 2017. "Analysis of thermal coal pricing and the coal price distortion in China from the perspective of market forces," Energy Policy, Elsevier, vol. 106(C), pages 148-154.
    30. Balke, Nathan S. & Brown, Stephen P.A., 2018. "Oil supply shocks and the U.S. economy: An estimated DSGE model," Energy Policy, Elsevier, vol. 116(C), pages 357-372.
    31. Zhengquan Guo & Xingping Zhang & Daojuan Wang & Xiaonan Zhao, 2019. "The Impacts of an Energy Price Decline Associated with a Carbon Tax on the Energy-Economy-Environment System in China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(12), pages 2689-2702, September.
    32. Punzi, Maria Teresa, 2019. "The impact of energy price uncertainty on macroeconomic variables," Energy Policy, Elsevier, vol. 129(C), pages 1306-1319.
    33. Guo, Jin & Zheng, Xinye & Chen, Zhan-Ming, 2016. "How does coal price drive up inflation? Reexamining the relationship between coal price and general price level in China," Energy Economics, Elsevier, vol. 57(C), pages 265-276.
    34. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    35. Sheng, Yu & Shi, Xunpeng & Zhang, Dandan, 2014. "Economic growth, regional disparities and energy demand in China," Energy Policy, Elsevier, vol. 71(C), pages 31-39.
    36. Argentiero, Amedeo & Bollino, Carlo Andrea & Micheli, Silvia & Zopounidis, Constantin, 2018. "Renewable energy sources policies in a Bayesian DSGE model," Renewable Energy, Elsevier, vol. 120(C), pages 60-68.
    37. Xiao, Bowen & Fan, Ying & Guo, Xiaodan, 2018. "Exploring the macroeconomic fluctuations under different environmental policies in China: A DSGE approach," Energy Economics, Elsevier, vol. 76(C), pages 439-456.
    38. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    39. Shi, Xunpeng & Sun, Sizhong, 2017. "Energy price, regulatory price distortion and economic growth: A case study of China," Energy Economics, Elsevier, vol. 63(C), pages 261-271.
    40. Zhao, Xiaoli & Ma, Chunbo & Hong, Dongyue, 2010. "Why did China's energy intensity increase during 1998-2006: Decomposition and policy analysis," Energy Policy, Elsevier, vol. 38(3), pages 1379-1388, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2022. "Exploring the multidimensional effects of China's coal de-capacity policy: A regression discontinuity design," Resources Policy, Elsevier, vol. 75(C).
    2. Naimeh Mohammadi & Hamid Mostofi & Hans-Liudger Dienel, 2023. "Policy Chain of Energy Transition from Economic and Innovative Perspectives: Conceptual Framework and Consistency Analysis," Sustainability, MDPI, vol. 15(17), pages 1-27, August.
    3. Filipović, Sanja & Lior, Noam & Radovanović, Mirjana, 2022. "The green deal – just transition and sustainable development goals Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Wang, Tiantian & Wu, Fei & Zhang, Dayong & Ji, Qiang, 2023. "Energy market reforms in China and the time-varying connectedness of domestic and international markets," Energy Economics, Elsevier, vol. 117(C).
    5. Binbin Yang & Sang-Do Park, 2023. "Who Drives Carbon Neutrality in China? Text Mining and Network Analysis," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    6. Wang, Tiantian & Qu, Wan & Zhang, Dayong & Ji, Qiang & Wu, Fei, 2022. "Time-varying determinants of China's liquefied natural gas import price: A dynamic model averaging approach," Energy, Elsevier, vol. 259(C).
    7. Yugang He & Moongi Lee, 2022. "Macroeconomic Effects of Energy Price: New Insight from Korea?," Mathematics, MDPI, vol. 10(15), pages 1-14, July.
    8. Xie, Lunyu & Wei, Chu & Zheng, Xinye & Liu, Yang & Wu, Wanyi & Feng, Ziru, 2023. "Who benefits from household energy transition? A cost-benefit analysis based on household survey data in China," China Economic Review, Elsevier, vol. 77(C).
    9. Haisheng Hu & Wanhao Dong, 2022. "The Goal of Carbon Peaking, Carbon Emissions, and the Economic Effects of China’s Energy Planning Policy: Analysis Using a CGE Model," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    10. Liu, Feng & Lv, Tao & Meng, Yuan & Li, Cong & Hou, Xiaoran & Xu, Jie & Deng, Xu, 2023. "Potential analysis of BESS and CCUS in the context of China's carbon trading scheme toward the low-carbon electricity system," Renewable Energy, Elsevier, vol. 210(C), pages 462-471.
    11. Wang, Delu & Li, Chunxiao & Mao, Jinqi & Yang, Qing, 2023. "What affects the implementation of the renewable portfolio standard? An analysis of the four-party evolutionary game," Renewable Energy, Elsevier, vol. 204(C), pages 250-261.
    12. Xin Su & Frédéric Ghersi & Fei Teng & Gaëlle Treut & Meicong Liang, 2022. "The economic impact of a deep decarbonisation pathway for China: a hybrid model analysis through bottom-up and top-down linking," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-37, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yanfang & Nie, Rui & Shi, Xunpeng & Qian, Xiangyan & Wang, Ke, 2019. "Can energy-price regulations smooth price fluctuations? Evidence from China’s coal sector," Energy Policy, Elsevier, vol. 128(C), pages 125-135.
    2. Wieland, Volker & Cwik, Tobias & Müller, Gernot J. & Schmidt, Sebastian & Wolters, Maik, 2012. "A new comparative approach to macroeconomic modeling and policy analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 83(3), pages 523-541.
    3. Miguel Casares & Antonio Moreno & Jesús Vázquez, 2012. "Wage stickiness and unemployment fluctuations: an alternative approach," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(3), pages 395-422, September.
    4. Ciola, Emanuele & Turco, Enrico & Gurgone, Andrea & Bazzana, Davide & Vergalli, Sergio & Menoncin, Francesco, 2023. "Enter the MATRIX model:a Multi-Agent model for Transition Risks with application to energy shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    5. Givens, Gregory E., 2011. "Unemployment insurance in a sticky-price model with worker moral hazard," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1192-1214, August.
    6. Wang, Xiaofei & Liu, Chuangeng & Chen, Shaojie & Chen, Lei & Li, Ke & Liu, Na, 2020. "Impact of coal sector’s de-capacity policy on coal price," Applied Energy, Elsevier, vol. 265(C).
    7. Adnan Haider Bukhari & Safdar Ullah Khan, 2008. "A Small Open Economy DSGE Model for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(4), pages 963-1008.
    8. Jean Boivin & Marc P. Giannoni, 2006. "Has Monetary Policy Become More Effective?," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 445-462, August.
    9. Jordi Galí & Mark Gertler, 2007. "Macroeconomic Modeling for Monetary Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 21(4), pages 25-46, Fall.
    10. Drissi, Ramzi & Ghassan, Hassan B., 2018. "Sticky Price versus Sticky Information Price: Empirical Evidence in the New Keynesian Setting," MPRA Paper 93075, University Library of Munich, Germany, revised Apr 2019.
    11. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    12. Gubler, Matthias & Hertweck, Matthias S., 2013. "Commodity price shocks and the business cycle: Structural evidence for the U.S," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 324-352.
    13. Fan, Wenrui & Wang, Zanxin, 2022. "Whether to abandon or continue the petroleum product price regulation in China?," Energy Policy, Elsevier, vol. 165(C).
    14. Shiqiu Zhu & Yuanying Chi & Kaiye Gao & Yahui Chen & Rui Peng, 2022. "Analysis of Influencing Factors of Thermal Coal Price," Energies, MDPI, vol. 15(15), pages 1-16, August.
    15. Schmidt, Sebastian & Wieland, Volker, 2013. "The New Keynesian Approach to Dynamic General Equilibrium Modeling: Models, Methods and Macroeconomic Policy Evaluation," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1439-1512, Elsevier.
    16. Turco, Enrico & Bazzana, Davide & Rizzati, Massimiliano & Ciola, Emanuele & Vergalli, Sergio, 2023. "Energy price shocks and stabilization policies in the MATRIX model," Energy Policy, Elsevier, vol. 177(C).
    17. Guangling 'Dave' Liu & Rangan Gupta & Eric Schaling, 2009. "A New-Keynesian DSGE model for forecasting the South African economy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 387-404.
    18. Adnan Haider & Musleh ud Din & Ejaz Ghani, 2012. "Monetary Policy, Informality and Business Cycle Fluctuations in a Developing Economy Vulnerable to External Shocks," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 51(4), pages 609-681.
    19. Susanto Basu & Brent Bundick, 2017. "Uncertainty Shocks in a Model of Effective Demand," Econometrica, Econometric Society, vol. 85, pages 937-958, May.
    20. Zhang, Yanfang & Gao, Qi & Wei, Jinpeng & Shi, Xunpeng & Zhou, Dequn, 2023. "Can China's energy-consumption permit trading scheme achieve the “Porter” effect? Evidence from an estimated DSGE model," Energy Policy, Elsevier, vol. 180(C).

    More about this item

    Keywords

    Coal capacity cut; Coal price; DSGE model; Energy transition; Carbon neutrality;
    All these keywords.

    JEL classification:

    • D5 - Microeconomics - - General Equilibrium and Disequilibrium
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:155:y:2021:i:c:s0301421521002445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.