IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v69y2010i9p1765-1776.html
   My bibliography  Save this article

Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach

Author

Listed:
  • Hoang, Viet-Ngu
  • Rao, D.S. Prasada

Abstract

Environmental efficiency measures constructed using the materials balance principle have two important shortcomings: (1) the ambiguity in the treatment of immaterial inputs and the various types of energy and (2) the lack of universally accepted weights for various material inputs. These two limitations are primarily caused by the fact that the materials balance condition is strictly regulated by the law of mass/energy conservation and that mass/energy content cannot be a good physical common unit of various inputs. The use of cumulative exergy content overcomes these problems. The use of cumulative exergy content allows the inclusion of life cycle assessment; hence facilitates the analysis of the cumulative pollution and total affects on natural resources. The present study uses cumulative exergy content to construct new efficiency sustainable measures and decomposes them into technical efficiency and cumulative exergy allocative efficiency in agricultural production. Empirical applications on OECD agriculture yielded a number of important findings: (1) OECD has the potential to save 72.3% of cumulative exergy consumption and improvements can be achieved by being more technically efficient and choosing a better combination of inputs; (2) the sustainable efficiency varied enormously across countries; and (3) the efficiency levels in 2003 was lower than in 1990.

Suggested Citation

  • Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
  • Handle: RePEc:eee:ecolec:v:69:y:2010:i:9:p:1765-1776
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(10)00157-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saidur, R. & Sattar, M.A. & Masjuki, H.H. & Ahmed, S. & Hashim, U., 2007. "An estimation of the energy and exergy efficiencies for the energy resources consumption in the transportation sector in Malaysia," Energy Policy, Elsevier, vol. 35(8), pages 4018-4026, August.
    2. Sciubba, Enrico & Ulgiati, Sergio, 2005. "Emergy and exergy analyses: Complementary methods or irreducible ideological options?," Energy, Elsevier, vol. 30(10), pages 1953-1988.
    3. Hoang, Viet-Ngu & Coelli, Tim, 2011. "Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 462-474.
    4. Cuesta, Rafael A. & Lovell, C.A. Knox & Zofío, José L., 2009. "Environmental efficiency measurement with translog distance functions: A parametric approach," Ecological Economics, Elsevier, vol. 68(8-9), pages 2232-2242, June.
    5. van der Werf, Hayo M. G. & Petit, Jean & Sanders, Joost, 2005. "The environmental impacts of the production of concentrated feed: the case of pig feed in Bretagne," Agricultural Systems, Elsevier, vol. 83(2), pages 153-177, February.
    6. Meyer, Lutz & Tsatsaronis, George & Buchgeister, Jens & Schebek, Liselotte, 2009. "Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems," Energy, Elsevier, vol. 34(1), pages 75-89.
    7. Utlu, Zafer & Hepbasli, Arif, 2007. "Assessment of the Turkish utility sector through energy and exergy analyses," Energy Policy, Elsevier, vol. 35(10), pages 5012-5020, October.
    8. Ayres, Robert U., 1998. "Eco-thermodynamics: economics and the second law," Ecological Economics, Elsevier, vol. 26(2), pages 189-209, August.
    9. Hermann, Weston A., 2006. "Quantifying global exergy resources," Energy, Elsevier, vol. 31(12), pages 1685-1702.
    10. Coggins, Jay S. & Swinton, John R., 1996. "The Price of Pollution: A Dual Approach to Valuing SO2Allowances," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 58-72, January.
    11. S Reinhard & G Thijssen, 2000. "Nitrogen efficiency of Dutch dairy farms: a shadow cost system approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 27(2), pages 167-186, June.
    12. Ji, Xi & Chen, G.Q. & Chen, B. & Jiang, M.M., 2009. "Exergy-based assessment for waste gas emissions from Chinese transportation," Energy Policy, Elsevier, vol. 37(6), pages 2231-2240, June.
    13. Picazo-Tadeo, Andres J. & Reig-Martinez, Ernest & Hernandez-Sancho, Francesc, 2005. "Directional distance functions and environmental regulation," Resource and Energy Economics, Elsevier, vol. 27(2), pages 131-142, June.
    14. Fare, Rolf & Grosskopf, Shawna & Tyteca, Daniel, 1996. "An activity analysis model of the environmental performance of firms--application to fossil-fuel-fired electric utilities," Ecological Economics, Elsevier, vol. 18(2), pages 161-175, August.
    15. Watanabe, Michio & Tanaka, Katsuya, 2007. "Efficiency analysis of Chinese industry: A directional distance function approach," Energy Policy, Elsevier, vol. 35(12), pages 6323-6331, December.
    16. Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
    17. Chen, B. & Chen, G.Q., 2007. "Resource analysis of the Chinese society 1980-2002 based on exergy--Part 3: Agricultural products," Energy Policy, Elsevier, vol. 35(4), pages 2065-2078, April.
    18. Tim Coelli & Ludwig Lauwers & Guido Huylenbroeck, 2007. "Environmental efficiency measurement and the materials balance condition," Journal of Productivity Analysis, Springer, vol. 28(1), pages 3-12, October.
    19. Isabelle Piot-Lepetit & Monique Le Moing, 2007. "Productivity and environmental regulation : the effect of the nitrates directive in the French pig sector," Post-Print hal-02375148, HAL.
    20. Ball, V.E. & Lovell, C.A K. & Nehring, R.F. & Somwaru, A., 1994. "Incorporating indesirable outputs into models of production: an application to US agriculture," Cahiers d'Economie et de Sociologie Rurales (CESR), Institut National de la Recherche Agronomique (INRA), vol. 31.
    21. Robert Summers, 1973. "International Price Comparisons Based Upon Incomplete Data," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 19(1), pages 1-16, March.
    22. Welch, Eric & Barnum, Darold, 2009. "Joint environmental and cost efficiency analysis of electricity generation," Ecological Economics, Elsevier, vol. 68(8-9), pages 2336-2343, June.
    23. Utlu, Zafer & Hepbasli, Arif, 2007. "A review and assessment of the energy utilization efficiency in the Turkish industrial sector using energy and exergy analysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1438-1459, September.
    24. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    25. Brown, M. T. & Herendeen, R. A., 1996. "Embodied energy analysis and EMERGY analysis: a comparative view," Ecological Economics, Elsevier, vol. 19(3), pages 219-235, December.
    26. Chen, G.Q. & Jiang, M.M. & Yang, Z.F. & Chen, B. & Ji, Xi & Zhou, J.B., 2009. "Exergetic assessment for ecological economic system: Chinese agriculture," Ecological Modelling, Elsevier, vol. 220(3), pages 397-410.
    27. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    28. Saidur, R. & Sattar, M.A. & Masjuki, H.H. & Abdessalam, H. & Shahruan, B.S., 2007. "Energy and exergy analysis at the utility and commercial sectors of Malaysia," Energy Policy, Elsevier, vol. 35(3), pages 1956-1966, March.
    29. Sciubba, Enrico, 2003. "Extended exergy accounting applied to energy recovery from waste: The concept of total recycling," Energy, Elsevier, vol. 28(13), pages 1315-1334.
    30. Dincer, I. & Hussain, M. M. & Al-Zaharnah, I., 2005. "Energy and exergy utilization in agricultural sector of Saudi Arabia," Energy Policy, Elsevier, vol. 33(11), pages 1461-1467, July.
    31. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    32. Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.
    33. Shaik, Saleem & Perrin, Richard K., 2001. "Agricultural Productivity and Environmental Impacts: The Role of Non-parametric Analysis," 2001 Annual meeting, August 5-8, Chicago, IL 20565, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    34. Daniel Tyteca, 1997. "Linear Programming Models for the Measurement of Environmental Performance of Firms—Concepts and Empirical Results," Journal of Productivity Analysis, Springer, vol. 8(2), pages 183-197, May.
    35. Mette Asmild & Jens Leth Hougaard, 2006. "Economic versus environmental improvement potentials of Danish pig farms," Agricultural Economics, International Association of Agricultural Economists, vol. 35(2), pages 171-181, September.
    36. Robert Ayres, 1995. "Thermodynamics and process analysis for future economic scenarios," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 6(3), pages 207-230, October.
    37. Isabelle Piot-Lepetit & Monique Moing, 2007. "Productivity and environmental regulation: the effect of the nitrates directive in the French pig sector," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(4), pages 433-446, December.
    38. Scheel, Holger, 2001. "Undesirable outputs in efficiency valuations," European Journal of Operational Research, Elsevier, vol. 132(2), pages 400-410, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoang, Viet-Ngu & Coelli, Tim, 2011. "Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 462-474.
    2. Hoang, Viet-Ngu & Alauddin, Mohammad, 2009. "Analysis of Agricultural Sustainability: A Review of Exergy Methodologies and Their Application in OECD," MPRA Paper 90406, University Library of Munich, Germany, revised 15 Mar 2010.
    3. Alfons Oude Lansink & Alan Wall, 2014. "Frontier models for evaluating environmental efficiency: an overview," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 43-50.
    4. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    5. Dakpo, Hervé K & Jeanneaux, Philippe & Latruffe, Laure, 2014. "Inclusion of undesirable outputs in production technology modeling: The case of greenhouse gas emissions in French meat sheep farming," Working Papers 207806, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    6. Lauwers, Ludwig, 2009. "Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models," Ecological Economics, Elsevier, vol. 68(6), pages 1605-1614, April.
    7. Viet-Ngu Hoang & Mohammad Alauddin, 2012. "Input-Orientated Data Envelopment Analysis Framework for Measuring and Decomposing Economic, Environmental and Ecological Efficiency: An Application to OECD Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(3), pages 431-452, March.
    8. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2015. "Carbon dioxide emission standards for U.S. power plants: An efficiency analysis perspective," Energy Economics, Elsevier, vol. 50(C), pages 140-153.
    9. Behrouz Arabi & Susila Munisamy Doraisamy & Ali Emrouznejad & Alireza Khoshroo, 2017. "Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index," Annals of Operations Research, Springer, vol. 255(1), pages 221-239, August.
    10. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    11. Wettemann, Patrick, 2015. "Die Entwicklung der Produktivität von Marktfruchtbetrieben unter Berücksichtigung von Treibhausgasemissionen," 55th Annual Conference, Giessen, Germany, September 23-25, 2015 209213, German Association of Agricultural Economists (GEWISOLA).
    12. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    13. Annageldy Arazmuradov, 2016. "Economic prospect on carbon emissions in Commonwealth of Independent States," Economic Change and Restructuring, Springer, vol. 49(4), pages 395-427, November.
    14. Tim Coelli & Ludwig Lauwers & Guido Huylenbroeck, 2007. "Environmental efficiency measurement and the materials balance condition," Journal of Productivity Analysis, Springer, vol. 28(1), pages 3-12, October.
    15. Soledad Moya & Jordi Perramon & Anselm Constans, 2005. "IFRS Adoption in Europe: The Case of Germany," Working Papers 0501, Departament Empresa, Universitat Autònoma de Barcelona, revised Feb 2005.
    16. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    17. Huang, Wei & Bruemmer, Bernhard & Huntsinger, Lynn, 2016. "Incorporating measures of grassland productivity into efficiency estimates for livestock grazing on the Qinghai-Tibetan Plateau in China," Ecological Economics, Elsevier, vol. 122(C), pages 1-11.
    18. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    19. Gongbing Bi & Yan Luo & Jingjing Ding & Liang Liang, 2015. "Environmental performance analysis of Chinese industry from a slacks-based perspective," Annals of Operations Research, Springer, vol. 228(1), pages 65-80, May.
    20. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:69:y:2010:i:9:p:1765-1776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.