IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v257y2021ics0378377421004376.html
   My bibliography  Save this article

Measuring the effect of improved irrigation technologies on irrigated agriculture. A study case in Central Chile

Author

Listed:
  • Jordan, Cristian
  • Donoso, Guillermo
  • Speelman, Stijn

Abstract

Irrigated agriculture is the primary sector demanding water resources in the world. Given that, improved irrigation technologies could play a crucial role in enhancing water use efficiency. This paper uses causal inference estimators to evaluate the effect of these technologies on irrigators at the farm level in two irrigated valleys in Central Chile. Doubly robust estimators were employed to address the selection bias of the adoption of improved irrigation technologies. The results show first a low level of technology adoption, with only 18% of irrigators adopting irrigation, where access to credits and education plays a crucial role in their adoption. Despite this low rate, the estimates show consistently positive and significant impacts on adopters in terms of annual margins and land use. As a result, our research calls for attention towards focusing programs and policy targeting on reducing entry barriers and broadening the adoption of irrigation technologies, allowing to reduce the gap in terms of economic wellbeing and the long-term sustainability and adaptation to climate change of irrigated areas.

Suggested Citation

  • Jordan, Cristian & Donoso, Guillermo & Speelman, Stijn, 2021. "Measuring the effect of improved irrigation technologies on irrigated agriculture. A study case in Central Chile," Agricultural Water Management, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:agiwat:v:257:y:2021:i:c:s0378377421004376
    DOI: 10.1016/j.agwat.2021.107160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421004376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark W. Rosegrant & Claudia Ringler & Tingju Zhu & Simla Tokgoz & Prapti Bhandary, 2013. "Water and food in the bioeconomy: challenges and opportunities for development," Agricultural Economics, International Association of Agricultural Economists, vol. 44(s1), pages 139-150, November.
    2. Tambo, Justice A. & Mockshell, Jonathan, 2018. "Differential Impacts of Conservation Agriculture Technology Options on Household Income in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 151(C), pages 95-105.
    3. Julio Berbel & Carlos Gutiérrez-Martín & Juan Rodríguez-Díaz & Emilio Camacho & Pilar Montesinos, 2015. "Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 663-678, February.
    4. George Frisvold & Charles Sanchez & Noel Gollehon & Sharon B. Megdal & Paul Brown, 2018. "Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    5. Zhang, Biao & Fu, Zetian & Wang, Jieqiong & Zhang, Lingxian, 2019. "Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 349-357.
    6. David Zilberman & Doug Parker, 1996. "Explaining Irrigation Technology Choices: A Microparameter Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1064-1072.
    7. Narayanamoorthy, A & Bhattarai, M & Jothi, P, 2018. "An assessment of the economic impact of drip irrigation in vegetable production in India," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 31(1).
    8. Wanglin Ma & Alan Renwick & Kathryn Bicknell, 2018. "Higher Intensity, Higher Profit? Empirical Evidence from Dairy Farming in New Zealand," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 739-755, September.
    9. Jeannie Sowers & Avner Vengosh & Erika Weinthal, 2011. "Climate change, water resources, and the politics of adaptation in the Middle East and North Africa," Climatic Change, Springer, vol. 104(3), pages 599-627, February.
    10. Dale T. Manning & Christopher Goemans & Alexander Maas, 2017. "Producer Responses to Surface Water Availability and Implications for Climate Change Adaptation," Land Economics, University of Wisconsin Press, vol. 93(4), pages 631-653.
    11. Salvatore Di Falco & Marcella Veronesi & Mahmud Yesuf, 2011. "Does Adaptation to Climate Change Provide Food Security? A Micro-Perspective from Ethiopia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 825-842.
    12. Beliyou Haile & Carlo Azzarri & Cleo Roberts & David J. Spielman, 2017. "Targeting, bias, and expected impact of complex innovations on developing-country agriculture: evidence from Malawi," Agricultural Economics, International Association of Agricultural Economists, vol. 48(3), pages 317-326, May.
    13. Bjornlund, Henning & Nicol, Lorraine & Klein, K.K., 2009. "The adoption of improved irrigation technology and management practices--A study of two irrigation districts in Alberta, Canada," Agricultural Water Management, Elsevier, vol. 96(1), pages 121-131, January.
    14. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    15. Dillon, Andrew, 2011. "The Effect of Irrigation on Poverty Reduction, Asset Accumulation, and Informal Insurance: Evidence from Northern Mali," World Development, Elsevier, vol. 39(12), pages 2165-2175.
    16. Rebecca Taylor & David Zilberman, 2017. "Diffusion of Drip Irrigation: The Case of California," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(1), pages 16-40.
    17. Tambo, J. & Mockshell, J., 2018. "Differential impacts of conservation agriculture technology options on household welfare in sub-Saharan Africa," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277035, International Association of Agricultural Economists.
    18. Julio Berbel & Alfonso Expósito & Carlos Gutiérrez-Martín & Luciano Mateos, 2019. "Effects of the Irrigation Modernization in Spain 2002–2015," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1835-1849, March.
    19. Balasubramanya, Soumya & Stifel, David, 2020. "Viewpoint: Water, agriculture & poverty in an era of climate change: Why do we know so little?," Food Policy, Elsevier, vol. 93(C).
    20. Giovanni Cerulli, 2022. "Econometric Evaluation of Socio-Economic Programs," Advanced Studies in Theoretical and Applied Econometrics, Springer, edition 2, number 978-3-662-65945-8, July-Dece.
    21. Garbero, A. & Songsermsawas, T., 2018. "IFAD RESEARCH SERIES 31 - Impact of modern irrigation on household production and welfare outcomes: evidence from the participatory small-scale irrigation development programme (PASIDP) project in Eth," IFAD Research Series 280080, International Fund for Agricultural Development (IFAD).
    22. Margriet Caswell & David Zilberman, 1985. "The Choices of Irrigation Technologies in California," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(2), pages 224-234.
    23. Jara-Rojas, Roberto & Bravo-Ureta, Boris E. & Díaz, José, 2012. "Adoption of water conservation practices: A socioeconomic analysis of small-scale farmers in Central Chile," Agricultural Systems, Elsevier, vol. 110(C), pages 54-62.
    24. Trevor Birkenholtz, 2017. "Assessing India’s drip-irrigation boom: efficiency, climate change and groundwater policy," Water International, Taylor & Francis Journals, vol. 42(6), pages 663-677, August.
    25. Jordán, Cristian & Speelman, Stijn, 2020. "On-farm adoption of irrigation technologies in two irrigated valleys in Central Chile: The effect of relative abundance of water resources," Agricultural Water Management, Elsevier, vol. 236(C).
    26. Andrew D. Foster & Mark R. Rosenzweig, 2010. "Microeconomics of Technology Adoption," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 395-424, September.
    27. Mullally, Conner & Chakravarty, Shourish, 2018. "Are matching funds for smallholder irrigation money well spent?," Food Policy, Elsevier, vol. 76(C), pages 70-80.
    28. Andrew Dillon, 2011. "Do Differences in the Scale of Irrigation Projects Generate Different Impacts on Poverty and Production?," Journal of Agricultural Economics, Wiley Blackwell, vol. 62(2), pages 474-492, June.
    29. C. Dionisio Pérez-Blanco & Arthur Hrast-Essenfelder & Chris Perry, 2020. "Irrigation Technology and Water Conservation: A Review of the Theory and Evidence," Review of Environmental Economics and Policy, University of Chicago Press, vol. 14(2), pages 216-239.
    30. Cunguara, Benedito & Darnhofer, Ika, 2011. "Assessing the impact of improved agricultural technologies on household income in rural Mozambique," Food Policy, Elsevier, vol. 36(3), pages 378-390, June.
    31. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    32. Mwangi, Joseph Kanyua & Crewett, Wibke, 2019. "The impact of irrigation on small-scale African indigenous vegetable growers’ market access in peri-urban Kenya," Agricultural Water Management, Elsevier, vol. 212(C), pages 295-305.
    33. Mariano, Marc Jim & Villano, Renato & Fleming, Euan, 2012. "Factors influencing farmers’ adoption of modern rice technologies and good management practices in the Philippines," Agricultural Systems, Elsevier, vol. 110(C), pages 41-53.
    34. Takeshima, Hiroyuki & Hatzenbuehler, Patrick L. & Edeh, Hyacinth O., 2020. "Effects of agricultural mechanization on economies of scope in crop production in Nigeria," Agricultural Systems, Elsevier, vol. 177(C).
    35. Zhiqiang Tan, 2010. "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika, Biometrika Trust, vol. 97(3), pages 661-682.
    36. Borrego-Marín, María M. & Berbel, J., 2019. "Cost-benefit analysis of irrigation modernization in Guadalquivir River Basin," Agricultural Water Management, Elsevier, vol. 212(C), pages 416-423.
    37. E. G. Kebebe, 2017. "Household nutrition and income impacts of using dairy technologies in mixed crop–livestock production systems," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(4), pages 626-644, October.
    38. Balasubramanya, Soumya & Stifel, David, "undated". "Viewpoint: water, agriculture and poverty in an era of climate change: why do we know so little?," Papers published in Journals (Open Access) H049664, International Water Management Institute.
    39. Alejandra Engler & Roberto Jara-Rojas & Carlos Bopp, 2016. "Efficient use of Water Resources in Vineyards: A Recursive joint Estimation for the Adoption of Irrigation Technology and Scheduling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5369-5383, November.
    40. Hiroyuki Takeshima, 2018. "Distributional Effects of Agricultural Infrastructure in Developing Countries: Large Irrigation Dams and Drought Mitigation in Nigeria," Journal of Developing Areas, Tennessee State University, College of Business, vol. 52(3), pages 1-13, July-Sept.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liangzhen Zang & Yahua Wang & Yiqing Su, 2021. "Does Farmland Scale Management Promote Rural Collective Action? An Empirical Study of Canal Irrigation Systems in China," Land, MDPI, vol. 10(11), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jordán, Cristian & Speelman, Stijn, 2020. "On-farm adoption of irrigation technologies in two irrigated valleys in Central Chile: The effect of relative abundance of water resources," Agricultural Water Management, Elsevier, vol. 236(C).
    2. Gonzalo Villa‐Cox & Francesco Cavazza & Cristian Jordan & Mijail Arias‐Hidalgo & Paúl Herrera & Ramon Espinel & Davide Viaggi & Stijn Speelman, 2021. "Understanding constraints on private irrigation adoption decisions under uncertainty in data constrained settings: A novel empirical approach tested on Ecuadorian Cocoa cultivations," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 985-999, November.
    3. Castillo, Gracia Maria Lanza & Engler, Alejandra & Wollni, Meike, 2021. "Planned behavior and social capital: Understanding farmers’ behavior toward pressurized irrigation technologies," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Takeshima, Hiroyuki & Hatzenbuehler, Patrick L. & Edeh, Hyacinth O., 2020. "Effects of agricultural mechanization on economies of scope in crop production in Nigeria," Agricultural Systems, Elsevier, vol. 177(C).
    5. Garbero, Alessandra & Songsermsawas, Tisorn, 2016. "Impact of modern irrigation on household production and welfare outcomes: Evidence from the PASIDP project in Ethiopia," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235949, Agricultural and Applied Economics Association.
    6. Diana Martínez-Arteaga & Nolver Atanacio Arias Arias & Aquiles E. Darghan & Dursun Barrios, 2023. "Identification of Influential Factors in the Adoption of Irrigation Technologies through Neural Network Analysis: A Case Study with Oil Palm Growers," Agriculture, MDPI, vol. 13(4), pages 1-13, April.
    7. Auci, Sabrina & Pronti, Andrea, 2023. "Irrigation technology adaptation for a sustainable agriculture: A panel endogenous switching analysis on the Italian farmland productivity," Resource and Energy Economics, Elsevier, vol. 74(C).
    8. Zhang, Biao & Fu, Zetian & Wang, Jieqiong & Zhang, Lingxian, 2019. "Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 349-357.
    9. Bader Alhafi Alotaibi & Hazem S. Kassem, 2021. "Adoption of Sustainable Water Management Practices among Farmers in Saudi Arabia," Sustainability, MDPI, vol. 13(20), pages 1-17, October.
    10. Rossi, Fabiana Ribeiro & Filho, Hildo Meirelles de Souza & Miranda, Bruno Varella & Carrer, Marcelo José, 2020. "The role of contracts in the adoption of irrigation by Brazilian orange growers," Agricultural Water Management, Elsevier, vol. 233(C).
    11. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    12. Charles Yaw Okyere & Ama Asantewah Ahene-Codjoe, 2022. "Irrigated Agriculture and Welfare: Panel Data Evidence from Southern Ghana," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 34(2), pages 583-610, April.
    13. Wondimagegn Tesfaye & Garrick Blalock & Nyasha Tirivayi, 2021. "Climate‐Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 878-899, May.
    14. Martey, Edward & Etwire, Prince M. & Mockshell, Jonathan, 2021. "Climate-smart cowpea adoption and welfare effects of comprehensive agricultural training programs," Technology in Society, Elsevier, vol. 64(C).
    15. Maria Vrachioli & Spiro E. Stefanou & Vangelis Tzouvelekas, 2021. "Impact Evaluation of Alternative Irrigation Technology in Crete: Correcting for Selectivity Bias," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(3), pages 551-574, July.
    16. Lim, Krisha & Wichmann, Bruno & Luckert, Martin, 2021. "Adaptation, spatial effects, and targeting: Evidence from Africa and Asia," World Development, Elsevier, vol. 139(C).
    17. Fissha Asmare & Jūratė Jaraitė & Andrius Kažukauskas, 2022. "Climate change adaptation and productive efficiency of subsistence farming: A bias‐corrected panel data stochastic frontier approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(3), pages 739-760, September.
    18. Mullally, Conner & Chakravarty, Shourish, 2018. "Are matching funds for smallholder irrigation money well spent?," Food Policy, Elsevier, vol. 76(C), pages 70-80.
    19. Teklewold, Hailemariam & Gebrehiwot, Tagel & Bezabih, Mintewab, 2019. "Climate smart agricultural practices and gender differentiated nutrition outcome: An empirical evidence from Ethiopia," World Development, Elsevier, vol. 122(C), pages 38-53.
    20. Mekonnen, Dawit & Abate, Gashaw & Yimam, Seid, 2021. "Irrigation and Agricultural Transformation in Ethiopia," 2021 Conference, August 17-31, 2021, Virtual 315339, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:257:y:2021:i:c:s0378377421004376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.