IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v6y2017i4ne242.html
   My bibliography  Save this article

Energy scenarios: the value and limits of scenario analysis

Author

Listed:
  • Sergey Paltsev

Abstract

A need for low‐carbon world has added a new challenging dimension for the long‐term energy scenarios development. In addition to the traditional factors like technological progress, demographic, economic, political, and institutional considerations, there is another aspect of the modern energy forecasts related to the coverage, timing, and stringency of policies to mitigate the greenhouse gas emissions and air pollutants. Modern tools for the energy scenario development provide a good basis for the estimates of the required changes in the energy system to achieve certain climate and environmental targets. While the current scenarios show that a move to a low‐carbon energy future requires a drastic change in energy investment and the resulting mix in energy technologies, the exact technology mix, paths to the needed mix, price, and cost projections should be treated with a great degree of caution. The scenarios do not provide exact predictions, but they can be used as a qualitative analysis of decision‐making risks associated with different pathways. If history is any guide, energy scenarios overestimate the extent to which the future will look like the recent past. As future costs and the resulting technology mixes are uncertain, a wise government policy is to target emissions reductions from any source, rather than focus on boosting certain kinds of low‐carbon energy. WIREs Energy Environ 2017, 6:e242. doi: 10.1002/wene.242 This article is categorized under: Energy and Climate > Economics and Policy Energy and Climate > Systems and Infrastructure Energy Policy and Planning > Economics and Policy

Suggested Citation

  • Sergey Paltsev, 2017. "Energy scenarios: the value and limits of scenario analysis," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.
  • Handle: RePEc:bla:wireae:v:6:y:2017:i:4:n:e242
    DOI: 10.1002/wene.242
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.242
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.242?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Detlef P. van Vuuren & Steve J. Smith & Keywan Riahi, 2010. "Downscaling socioeconomic and emissions scenarios for global environmental change research: a review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 1(3), pages 393-404, May.
    2. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    3. Bosetti, Valentina & Tavoni, Massimo & Carraro, Carlo, 2009. "Climate Change Mitigation Strategies in Fast-Growing Countries: The Benefits of Early Action," Sustainable Development Papers 52541, Fondazione Eni Enrico Mattei (FEEM).
    4. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    5. Peter Lund, 2012. "The European Union challenge: integration of energy, climate, and economic policy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(1), pages 60-68, July.
    6. Rausch, Sebastian & Mowers, Matthew, 2014. "Distributional and efficiency impacts of clean and renewable energy standards for electricity," Resource and Energy Economics, Elsevier, vol. 36(2), pages 556-585.
    7. Chen, Wenying, 2005. "The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling," Energy Policy, Elsevier, vol. 33(7), pages 885-896, May.
    8. Pantelis Capros & Leonidas Mantzos, 2000. "The European energy outlook to 2010 and 2030," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 137-154.
    9. Holz, Franziska & von Hirschhausen, Christian & Kemfert, Claudia, 2008. "A strategic model of European gas supply (GASMOD)," Energy Economics, Elsevier, vol. 30(3), pages 766-788, May.
    10. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
    11. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    12. Jean-Charles Hourcade, Mark Jaccard, Chris Bataille, and Frederic Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-12.
    13. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    14. Gregory Mankiw, 1995. "The Growth of Nations," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 26(1, 25th A), pages 275-326.
    15. Paltsev, Sergey, 2014. "Scenarios for Russia's natural gas exports to 2050," Energy Economics, Elsevier, vol. 42(C), pages 262-270.
    16. repec:unu:wpaper:wp2012-65 is not listed on IDEAS
    17. Chaturvedi, Vaibhav & Waldhoff, Stephanie & Clarke, Leon & Fujimori, Shinichiro, 2012. "What are the starting points? Evaluating base-year assumptions in the Asian Modeling Exercise," Energy Economics, Elsevier, vol. 34(S3), pages 261-271.
    18. David M. Reiner, 2016. "Learning through a portfolio of carbon capture and storage demonstration projects," Nature Energy, Nature, vol. 1(1), pages 1-7, January.
    19. Mort Webster & Andrei Sokolov & John Reilly & Chris Forest & Sergey Paltsev & Adam Schlosser & Chien Wang & David Kicklighter & Marcus Sarofim & Jerry Melillo & Ronald Prinn & Henry Jacoby, 2012. "Analysis of climate policy targets under uncertainty," Climatic Change, Springer, vol. 112(3), pages 569-583, June.
    20. Detlef Vuuren & Keywan Riahi, 2011. "The relationship between short-term emissions and long-term concentration targets," Climatic Change, Springer, vol. 104(3), pages 793-801, February.
    21. Ronald Prinn & Sergey Paltsev & Andrei Sokolov & Marcus Sarofim & John Reilly & Henry Jacoby, 2011. "Scenarios with MIT integrated global systems model: significant global warming regardless of different approaches," Climatic Change, Springer, vol. 104(3), pages 515-537, February.
    22. van Ruijven, Bas J. & Daenzer, Katie & Fisher-Vanden, Karen & Kober, Tom & Paltsev, Sergey & Beach, Robert H. & Calderon, Silvia Liliana & Calvin, Kate & Labriet, Maryse & Kitous, Alban & Lucena, Andr, 2016. "Baseline projections for Latin America: base-year assumptions, key drivers and greenhouse emissions," Energy Economics, Elsevier, vol. 56(C), pages 499-512.
    23. anonymous, 1995. "Moderate growth expected for the nation, Southeast in 1996," Regional Update, Federal Reserve Bank of Atlanta, issue Oct, pages 1-4.
    24. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    25. Babiker, Mustafa & Gurgel, Angelo & Paltsev, Sergey & Reilly, John, 2009. "Forward-looking versus recursive-dynamic modeling in climate policy analysis: A comparison," Economic Modelling, Elsevier, vol. 26(6), pages 1341-1354, November.
    26. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    27. Valentina Bosetti, Carlo Carraro, Marzio Galeotti, Emanuele Massetti, Massimo Tavoni, 2006. "A World induced Technical Change Hybrid Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 13-38.
    28. Jasper Vliet & Andries Hof & Angelica Mendoza Beltran & Maarten Berg & Sebastiaan Deetman & Michel Elzen & Paul Lucas & Detlef Vuuren, 2014. "The impact of technology availability on the timing and costs of emission reductions for achieving long-term climate targets," Climatic Change, Springer, vol. 123(3), pages 559-569, April.
    29. Sergey Paltsev & Valerie Karplus & Henry Chen & Ioanna Karkatsouli & John Reilly & Henry Jacoby, 2015. "Regulatory control of vehicle and power plant emissions: how effective and at what cost?," Climate Policy, Taylor & Francis Journals, vol. 15(4), pages 438-457, July.
    30. Elmar Kriegler & John Weyant & Geoffrey Blanford & Volker Krey & Leon Clarke & Jae Edmonds & Allen Fawcett & Gunnar Luderer & Keywan Riahi & Richard Richels & Steven Rose & Massimo Tavoni & Detlef Vuu, 2014. "The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies," Climatic Change, Springer, vol. 123(3), pages 353-367, April.
    31. Sabine Messner, 1997. "Endogenized technological learning in an energy systems model," Journal of Evolutionary Economics, Springer, vol. 7(3), pages 291-313.
    32. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    33. Sergey Paltsev, 2012. "Implications of Alternative Mitigation Policies on World Prices for Fossil Fuels and Agricultural Products," WIDER Working Paper Series wp-2012-065, World Institute for Development Economic Research (UNU-WIDER).
    34. William D. Nordhaus, 1992. "The 'DICE' Model: Background and Structure of a Dynamic Integrated Climate-Economy Model of the Economics of Global Warming," Cowles Foundation Discussion Papers 1009, Cowles Foundation for Research in Economics, Yale University.
    35. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    36. Paltsev, Sergey, 2012. "Implications of Alternative Mitigation Policies on World Prices for Fossil Fuels and Agricultural Products," WIDER Working Paper Series 065, World Institute for Development Economic Research (UNU-WIDER).
    37. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    38. Herzog, Howard J., 2011. "Scaling up carbon dioxide capture and storage: From megatons to gigatons," Energy Economics, Elsevier, vol. 33(4), pages 597-604, July.
    39. Joe L. Lane & Simon Smart & Diego Schmeda‐Lopez & Ove Hoegh‐Guldberg & Andrew Garnett & Chris Greig & Eric McFarland, 2016. "Understanding constraints to the transformation rate of global energy infrastructure," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(1), pages 33-48, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimo Beccarello & Giacomo Di Foggia, 2023. "Review and Perspectives of Key Decarbonization Drivers to 2030," Energies, MDPI, vol. 16(3), pages 1-13, January.
    2. Edward Oughton, 2021. "Policy options for digital infrastructure strategies: A simulation model for broadband universal service in Africa," Papers 2102.03561, arXiv.org.
    3. Tiruwork B. Tibebu & Eric Hittinger & Qing Miao & Eric Williams, 2024. "Adoption Model Choice Affects the Optimal Subsidy for Residential Solar," Energies, MDPI, vol. 17(3), pages 1-19, February.
    4. Ansari, Dawud & Holz, Franziska, 2020. "Between stranded assets and green transformation: Fossil-fuel-producing developing countries towards 2055," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 130, pages 1-1.
    5. Leonard Goke & Jens Weibezahn & Christian von Hirschhausen, 2021. "A collective blueprint, not a crystal ball: How expectations and participation shape long-term energy scenarios," Papers 2112.04821, arXiv.org, revised Dec 2022.
    6. Karl-Kiên Cao & Johannes Metzdorf & Sinan Birbalta, 2018. "Incorporating Power Transmission Bottlenecks into Aggregated Energy System Models," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    7. Marlene Ofelia Sanchez-Escobar & Julieta Noguez & Jose Martin Molina-Espinosa & Rafael Lozano-Espinosa & Genoveva Vargas-Solar, 2021. "The Contribution of Bottom-Up Energy Models to Support Policy Design of Electricity End-Use Efficiency for Residential Buildings and the Residential Sector: A Systematic Review," Energies, MDPI, vol. 14(20), pages 1-28, October.
    8. Karl-Kiên Cao & Kai von Krbek & Manuel Wetzel & Felix Cebulla & Sebastian Schreck, 2019. "Classification and Evaluation of Concepts for Improving the Performance of Applied Energy System Optimization Models," Energies, MDPI, vol. 12(24), pages 1-51, December.
    9. Pedro Gerber Machado & Dominique Mouette & Luz D. Villanueva & A. Ricardo Esparta & Bruno Mendes Leite & Edmilson Moutinho dos Santos, 2019. "Energy systems modeling: Trends in research publication," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(4), July.
    10. Gauthier de Maere d’Aertrycke & Yves Smeers & Hugues de Peufeilhoux & Pierre-Laurent Lucille, 2020. "The Role of Electrification in the Decarbonization of Central-Western Europe," Energies, MDPI, vol. 13(18), pages 1-20, September.
    11. Small, Mitchell J. & Wong-Parodi, Gabrielle & Kefford, Benjamin M. & Stringer, Martin & Schmeda-Lopez, Diego R. & Greig, Chris & Ballinger, Benjamin & Wilson, Stephen & Smart, Simon, 2019. "Generating linked technology-socioeconomic scenarios for emerging energy transitions," Applied Energy, Elsevier, vol. 239(C), pages 1402-1423.
    12. Burandt, Thorsten, 2021. "Analyzing the necessity of hydrogen imports for net-zero emission scenarios in Japan," Applied Energy, Elsevier, vol. 298(C).
    13. Ansari, Dawud & Holz, Franziska & Al-Kuhlani, Hashem, 2020. "Energy Outlooks Compared: Global and Regional Insights," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(1), pages 21-42.
    14. Hiroto Shiraki & Masahiro Sugiyama, 2020. "Back to the basic: toward improvement of technoeconomic representation in integrated assessment models," Climatic Change, Springer, vol. 162(1), pages 13-24, September.
    15. Jacek Brożyna & Wadim Strielkowski & Aleš Zpěvák, 2023. "Evaluating the Chances of Implementing the “Fit for 55” Green Transition Package in the V4 Countries," Energies, MDPI, vol. 16(6), pages 1-17, March.
    16. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergey Paltsev, 2016. "Energy Scenarios: The Value and Limits of Scenario Analysis," EcoMod2016 9371, EcoMod.
    2. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    3. Elmar Kriegler & Ioanna Mouratiadou & Gunnar Luderer & Jae Edmonds & Ottmar Edenhofer, 2016. "Introduction to the RoSE special issue on the impact of economic growth and fossil fuel availability on climate protection," Climatic Change, Springer, vol. 136(1), pages 1-6, May.
    4. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    5. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    6. Giacomo Marangoni & Gauthier De Maere & Valentina Bosetti, 2017. "Optimal Clean Energy R&D Investments Under Uncertainty," MITP: Mitigation, Innovation and Transformation Pathways 256056, Fondazione Eni Enrico Mattei (FEEM).
    7. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    8. Emanuele Massetti, 2011. "Carbon tax scenarios for China and India: exploring politically feasible mitigation goals," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 11(3), pages 209-227, September.
    9. Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," NBER Working Papers 21637, National Bureau of Economic Research, Inc.
    10. Diana Dimitrova, 2018. "The 2018 Nobel Prize in Economics," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 6, pages 98-152.
    11. Nordhaus, William, 2013. "Integrated Economic and Climate Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1069-1131, Elsevier.
    12. Meng, Sam & Siriwardana, Mahinda & McNeill, Judith & Nelson, Tim, 2018. "The impact of an ETS on the Australian energy sector: An integrated CGE and electricity modelling approach," Energy Economics, Elsevier, vol. 69(C), pages 213-224.
    13. Guivarch, Céline & Hallegatte, Stéphane & Crassous, Renaud, 2009. "The resilience of the Indian economy to rising oil prices as a validation test for a global energy-environment-economy CGE model," Energy Policy, Elsevier, vol. 37(11), pages 4259-4266, November.
    14. Michetti, Melania & Parrado, Ramiro, 2012. "Improving Land-use modelling within CGE to assess Forest-based Mitigation Potential and Costs," Climate Change and Sustainable Development 122862, Fondazione Eni Enrico Mattei (FEEM).
    15. Bosetti, Valentina & Carraro, Carlo & De Cian, Enrica & Massetti, Emanuele & Tavoni, Massimo, 2013. "Incentives and stability of international climate coalitions: An integrated assessment," Energy Policy, Elsevier, vol. 55(C), pages 44-56.
    16. Carraro, Carlo & Duval, Romain & Bosetti, Valentina & Tavoni, Massimo, 2010. "What Should we Expect from Innovation? A Model-Based Assessment of the Environmental and Mitigation Cost Implications of Climat," CEPR Discussion Papers 7751, C.E.P.R. Discussion Papers.
    17. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    18. Simon Dietz & Nicholas Stern, 2014. "Endogenous growth, convexity of damages and climate risk: how Nordhaus� framework supports deep cuts in carbon emissions," GRI Working Papers 159, Grantham Research Institute on Climate Change and the Environment.
    19. Kai LESSMANN & Robert MARSCHINSKI & Ottmar EDENHOFER, 2008. "The Effects of Trade Sanctions in International Environmental Agreements," EcoMod2008 23800079, EcoMod.
    20. Tapia-Ahumada, Karen & Octaviano, Claudia & Rausch, Sebastian & Pérez-Arriaga, Ignacio, 2015. "Modeling intermittent renewable electricity technologies in general equilibrium models," Economic Modelling, Elsevier, vol. 51(C), pages 242-262.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:6:y:2017:i:4:n:e242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.