IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v1y2012i1p60-68.html
   My bibliography  Save this article

The European Union challenge: integration of energy, climate, and economic policy

Author

Listed:
  • Peter Lund

Abstract

The European Union (EU), the largest economy in the world, has binding sustainable energy and climate goals for the year 2020. The EU has recently presented a vision of a low‐carbon Europe in 2050, which requires the cutting of carbon emissions by over 80%. This will necessitate increased technology development and market deployment efforts in energy efficiency, renewable energy, and clean energy. In addition, such plans need to pay attention to the uneven financial capabilities of the 27 EU member states to undertake such ambitious climate measures. To reach acceptable levels of carbon emissions on a global scale, compensating for economic asymmetries worldwide may require a considerably higher input from Europe as well. The co‐benefits of a proactive European climate policy may be considerable, in particular for economic growth. Achieving these benefits will require greater integration of energy and climate and economic policy, which could form the basis of a green economy in Europe. This article is categorized under: Energy and Climate > Economics and Policy Energy Policy and Planning > Economics and Policy

Suggested Citation

  • Peter Lund, 2012. "The European Union challenge: integration of energy, climate, and economic policy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(1), pages 60-68, July.
  • Handle: RePEc:bla:wireae:v:1:y:2012:i:1:p:60-68
    DOI: 10.1002/wene.37
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.37
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.37?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    2. Lund, P.D., 2007. "The link between political decision-making and energy options: Assessing future role of renewable energy and energy efficiency in Finland," Energy, Elsevier, vol. 32(12), pages 2271-2281.
    3. R. K. Pachauri, 2012. "The way forward in climate change mitigation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(1), pages 3-8, July.
    4. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    5. Abrams Burton A., 2011. "What's an $800 Billion Stimulus Worth?," The Economists' Voice, De Gruyter, vol. 8(3), pages 1-3, September.
    6. Lund, P.D., 2011. "Boosting new renewable technologies towards grid parity – Economic and policy aspects," Renewable Energy, Elsevier, vol. 36(11), pages 2776-2784.
    7. Lund, P.D., 2009. "Effects of energy policies on industry expansion in renewable energy," Renewable Energy, Elsevier, vol. 34(1), pages 53-64.
    8. Andris Piebalgs, 2006. "Green paper: A European strategy for sustainable, competitive and secure energy," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 7(02), pages 8-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Strojny & Anna Krakowiak-Bal & Jarosław Knaga & Piotr Kacorzyk, 2023. "Energy Security: A Conceptual Overview," Energies, MDPI, vol. 16(13), pages 1-35, June.
    2. Sergey Paltsev, 2016. "Energy Scenarios: The Value and Limits of Scenario Analysis," EcoMod2016 9371, EcoMod.
    3. Sergey Paltsev, 2017. "Energy scenarios: the value and limits of scenario analysis," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kästel, Peter & Gilroy-Scott, Bryce, 2015. "Economics of pooling small local electricity prosumers—LCOE & self-consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 718-729.
    2. Lund, Peter D., 2014. "How fast can businesses in the new energy sector grow? An analysis of critical factors," Renewable Energy, Elsevier, vol. 66(C), pages 33-40.
    3. Kocaman, Ayse Selin & Modi, Vijay, 2017. "Value of pumped hydro storage in a hybrid energy generation and allocation system," Applied Energy, Elsevier, vol. 205(C), pages 1202-1215.
    4. David Gattie & Michael Hewitt, 2023. "National Security as a Value-Added Proposition for Advanced Nuclear Reactors: A U.S. Focus," Energies, MDPI, vol. 16(17), pages 1-26, August.
    5. Thure Traber & Franziska Simone Hegner & Hans-Josef Fell, 2021. "An Economically Viable 100% Renewable Energy System for All Energy Sectors of Germany in 2030," Energies, MDPI, vol. 14(17), pages 1-17, August.
    6. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    7. Kevin Ummel & Charles Fant, 2014. "Planning for Large-Scale Wind and Solar Power in South Africa: Identifying Cost-Effective Deployment Strategies Through Spatiotemporal Modelling," WIDER Working Paper Series wp-2014-121, World Institute for Development Economic Research (UNU-WIDER).
    8. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    9. Ummel, Kevin & Fant, Charles, 2014. "Identifying cost-effective deployment strategies through spatiotemporal modelling," WIDER Working Paper Series 121, World Institute for Development Economic Research (UNU-WIDER).
    10. Luigi Cirocco & Martin Belusko & Frank Bruno & John Boland & Peter Pudney, 2014. "Optimisation of Storage for Concentrated Solar Power Plants," Challenges, MDPI, vol. 5(2), pages 1-31, December.
    11. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    12. Ronnie D. Lipschutz & Dustin Mulvaney, 2013. "The road not taken, round II: centralized vs. distributed energy strategies and human security," Chapters, in: Hugh Dyer & Maria Julia Trombetta (ed.), International Handbook of Energy Security, chapter 22, pages 483-506, Edward Elgar Publishing.
    13. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2013. "Greener energy: Issues and challenges for Pakistan—wind power prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 519-538.
    14. Jakub Jurasz & Alexander Kies, 2018. "Day-Ahead Probabilistic Model for Scheduling the Operation of a Wind Pumped-Storage Hybrid Power Station: Overcoming Forecasting Errors to Ensure Reliability of Supply to the Grid," Sustainability, MDPI, vol. 10(6), pages 1-21, June.
    15. Lacchini, Corrado & Rüther, Ricardo, 2015. "The influence of government strategies on the financial return of capital invested in PV systems located in different climatic zones in Brazil," Renewable Energy, Elsevier, vol. 83(C), pages 786-798.
    16. Nasir, Jehanzeb & Javed, Adeel & Ali, Majid & Ullah, Kafait & Kazmi, Syed Ali Abbas, 2022. "Capacity optimization of pumped storage hydropower and its impact on an integrated conventional hydropower plant operation," Applied Energy, Elsevier, vol. 323(C).
    17. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    18. Pickard, William F., 2012. "Where renewable electricity is concerned, how costly is “too costly”?," Energy Policy, Elsevier, vol. 49(C), pages 346-354.
    19. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    20. Bartlett, Stuart & Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Manso, Pedro & Lehning, Michael, 2018. "Charting the course: A possible route to a fully renewable Swiss power system," Energy, Elsevier, vol. 163(C), pages 942-955.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:1:y:2012:i:1:p:60-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.