Advanced Search
MyIDEAS: Login

Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials

Contents:

Author Info

  • Jacobson, Mark Z.
  • Delucchi, Mark A.
Registered author(s):

    Abstract

    Climate change, pollution, and energy insecurity are among the greatest problems of our time. Addressing them requires major changes in our energy infrastructure. Here, we analyze the feasibility of providing worldwide energy for all purposes (electric power, transportation, heating/cooling, etc.) from wind, water, and sunlight (WWS). In Part I, we discuss WWS energy system characteristics, current and future energy demand, availability of WWS resources, numbers of WWS devices, and area and material requirements. In Part II, we address variability, economics, and policy of WWS energy. We estimate that ~3,800,000 5Â MW wind turbines, ~49,000 300Â MW concentrated solar plants, ~40,000 300Â MW solar PV power plants, ~1.7 billion 3Â kW rooftop PV systems, ~5350 100Â MW geothermal power plants, ~270 new 1300Â MW hydroelectric power plants, ~720,000 0.75Â MW wave devices, and ~490,000 1Â MW tidal turbines can power a 2030 WWS world that uses electricity and electrolytic hydrogen for all purposes. Such a WWS infrastructure reduces world power demand by 30% and requires only ~0.41% and ~0.59% more of the world's land for footprint and spacing, respectively. We suggest producing all new energy with WWS by 2030 and replacing the pre-existing energy by 2050. Barriers to the plan are primarily social and political, not technological or economic. The energy cost in a WWS world should be similar to that today.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V2W-51TXP82-2/2/de5d9bb816ee92da3bfef3f8ecd54b1d
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Energy Policy.

    Volume (Year): 39 (2011)
    Issue (Month): 3 (March)
    Pages: 1154-1169

    as in new window
    Handle: RePEc:eee:enepol:v:39:y:2011:i:3:p:1154-1169

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/enpol

    Related research

    Keywords: Wind power Solar power Water power;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Koomey, Jonathan & Hultman, Nathan E., 2007. "A reactor-level analysis of busbar costs for US nuclear plants, 1970-2005," Energy Policy, Elsevier, vol. 35(11), pages 5630-5642, November.
    2. Fthenakis, Vasilis M. & Kim, Hyung Chul, 2007. "Greenhouse-gas emissions from solar electric- and nuclear power: A life-cycle study," Energy Policy, Elsevier, vol. 35(4), pages 2549-2557, April.
    3. Sovacool, Benjamin K. & Watts, Charmaine, 2009. "Going Completely Renewable: Is It Possible (Let Alone Desirable)?," The Electricity Journal, Elsevier, vol. 22(4), pages 95-111, May.
    4. Sovacool, Benjamin K. & Sovacool, Kelly E., 2009. "Identifying future electricity-water tradeoffs in the United States," Energy Policy, Elsevier, vol. 37(7), pages 2763-2773, July.
    5. Yang, Chi-Jen, 2009. "An impending platinum crisis and its implications for the future of the automobile," Energy Policy, Elsevier, vol. 37(5), pages 1805-1808, May.
    6. Kessides, Ioannis N., 2010. "Nuclear power: Understanding the economic risks and uncertainties," Energy Policy, Elsevier, vol. 38(8), pages 3849-3864, August.
    7. Tokimatsu, Koji & Fujino, Jun'ichi & Konishi, Satoshi & Ogawa, Yuichi & Yamaji, Kenji, 2003. "Role of nuclear fusion in future energy systems and the environment under future uncertainties," Energy Policy, Elsevier, vol. 31(8), pages 775-797, June.
    8. Grubler, Arnulf, 2010. "The costs of the French nuclear scale-up: A case of negative learning by doing," Energy Policy, Elsevier, vol. 38(9), pages 5174-5188, September.
    9. Harding, Jim, 2007. "Economics of Nuclear Power and Proliferation Risks in a Carbon-Constrained World," The Electricity Journal, Elsevier, vol. 20(10), pages 65-76, December.
    10. Adamantiades, A. & Kessides, I., 2009. "Nuclear power for sustainable development: Current status and future prospects," Energy Policy, Elsevier, vol. 37(12), pages 5149-5166, December.
    11. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    12. Hammond, Geoffrey P., 1996. "Nuclear energy into the twenty-first century," Applied Energy, Elsevier, vol. 54(4), pages 327-344, August.
    13. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Jacobson, Mark Z. & Howarth, Robert W. & Delucchi, Mark A. & Scobie, Stan R. & Barth, Jannette M. & Dvorak, Michael J. & Klevze, Megan & Katkhuda, Hind & Miranda, Brian & Chowdhury, Navid A. & Jones, , 2013. "Response to comment on paper examining the feasibility of changing New York state's energy infrastructure to one derived from wind, water, and sunlight," Energy Policy, Elsevier, vol. 62(C), pages 1212-1215.
    2. Jacobson, Mark Z. & Howarth, Robert W. & Delucchi, Mark A. & Scobie, Stan R. & Barth, Jannette M. & Dvorak, Michael J. & Klevze, Megan & Katkhuda, Hind & Miranda, Brian & Chowdhury, Navid A. & Jones, , 2013. "Examining the feasibility of converting New York State’s all-purpose energy infrastructure to one using wind, water, and sunlight," Energy Policy, Elsevier, vol. 57(C), pages 585-601.
    3. Mohareb, Eugene A. & Kennedy, Christopher A., 2014. "Scenarios of technology adoption towards low-carbon cities," Energy Policy, Elsevier, vol. 66(C), pages 685-693.
    4. Peura, Pekka, 2013. "From Malthus to sustainable energy—Theoretical orientations to reforming the energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 309-327.
    5. Pinar Ertor Akyazi & Fikret Adaman & Begum Ozkaynak & Unal Zenginobuz, 2012. "Citizens’ Preferences over Nuclear and Renewable Energy Sources: Evidence from Turkey," Working Papers 2012/01, Bogazici University, Department of Economics.
    6. Kahn, Matthew E., 2013. "Local non-market quality of life dynamics in new wind farms communities," Energy Policy, Elsevier, vol. 59(C), pages 800-807.
    7. Stoll, Pia & Brandt, Nils & Nordström, Lars, 2014. "Including dynamic CO2 intensity with demand response," Energy Policy, Elsevier, vol. 65(C), pages 490-500.
    8. Vazhayil, Joy P. & Balasubramanian, R., 2013. "Optimization of India's power sector strategies using weight-restricted stochastic data envelopment analysis," Energy Policy, Elsevier, vol. 56(C), pages 456-465.
    9. Pickard, William F., 2013. "Transporting the terajoules: Efficient energy distribution in a post-carbon world," Energy Policy, Elsevier, vol. 62(C), pages 51-61.
    10. Trainer, Ted, 2013. "Can Europe run on renewable energy? A negative case," Energy Policy, Elsevier, vol. 63(C), pages 845-850.
    11. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    12. Zubi, Ghassan, 2011. "Technology mix alternatives with high shares of wind power and photovoltaics—case study for Spain," Energy Policy, Elsevier, vol. 39(12), pages 8070-8077.
    13. Gottesfeld, Perry & Cherry, Christopher R., 2011. "Lead emissions from solar photovoltaic energy systems in China and India," Energy Policy, Elsevier, vol. 39(9), pages 4939-4946, September.
    14. Manso, José Ramos Pires & Behmiri, Niaz Bashiri, 2013. "Renewable Energy and Sustainable Development/Energía renovable y Desarrollo Sostenible," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 31, pages 7-34, Enero.
    15. Martin de Wit & Matthew Kuperus Heun & Douglas J Crookes, 2013. "An overview of salient factors, relationships and values to support integrated energy-economic systems dynamic modelling," Working Papers 02/2013, Stellenbosch University, Department of Economics.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:3:p:1154-1169. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.