IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v36y2014i2p556-585.html
   My bibliography  Save this article

Distributional and efficiency impacts of clean and renewable energy standards for electricity

Author

Listed:
  • Rausch, Sebastian
  • Mowers, Matthew

Abstract

We examine the efficiency and distributional impacts of greenhouse gas policies directed toward the electricity sector in a model that links a “top-down” general equilibrium representation of the U.S. economy with a “bottom-up” electricity-sector dispatch and capacity expansion model. Our modeling framework features a high spatial and temporal resolution of electricity supply and demand, including renewable energy resources and generating technologies, while representing CO2 abatement options in non-electric sectors as well as economy-wide interactions. We find that clean and renewable energy standards entail substantial efficiency costs compared to a carbon pricing policy such as a cap-and-trade program or a carbon tax, and that these policies are regressive across the income distribution. The geographical distribution of cost is characterized by high burdens for regions that depend on non-qualifying generation fuels, primarily coal. Regions with abundant hydro power and wind resources, and a relatively clean generation mix in the absence of policy, are among the least impacted. An important shortcoming of energy standards vis-à-vis a carbon pricing policy is that no revenue is generated that can be used to alter unintended distributional consequences.

Suggested Citation

  • Rausch, Sebastian & Mowers, Matthew, 2014. "Distributional and efficiency impacts of clean and renewable energy standards for electricity," Resource and Energy Economics, Elsevier, vol. 36(2), pages 556-585.
  • Handle: RePEc:eee:resene:v:36:y:2014:i:2:p:556-585
    DOI: 10.1016/j.reseneeco.2013.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765513000547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2013.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rausch Sebastian & Metcalf Gilbert E. & Reilly John M & Paltsev Sergey, 2010. "Distributional Implications of Alternative U.S. Greenhouse Gas Control Measures," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(2), pages 1-46, July.
    2. Parry, Ian W.H. & Williams, Roberton C., 2011. "Moving U.S. Climate Policy Forward: Are Carbon Taxes the Only Good Alternative?," RFF Working Paper Series dp-11-02, Resources for the Future.
    3. Bovenberg, A Lans & Goulder, Lawrence H, 1996. "Optimal Environmental Taxation in the Presence of Other Taxes: General-Equilibrium Analyses," American Economic Review, American Economic Association, vol. 86(4), pages 985-1000, September.
    4. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel, 2009. "Greenhouse Gas Reductions under Low Carbon Fuel Standards?," American Economic Journal: Economic Policy, American Economic Association, vol. 1(1), pages 106-146, February.
    5. Palmer, Karen & Paul, Anthony & Woerman, Matt & Steinberg, Daniel C., 2011. "Federal policies for renewable electricity: Impacts and interactions," Energy Policy, Elsevier, vol. 39(7), pages 3975-3991, July.
    6. Lawrence H. Goulder & Ian W.H. Parry & Roberton C. Williams III & Dallas Burtraw, 2002. "The Cost-Effectiveness of Alternative Instruments for Environmental Protection in a Second-Best Setting," Chapters, in: Lawrence H. Goulder (ed.), Environmental Policy Making in Economies with Prior Tax Distortions, chapter 27, pages 523-554, Edward Elgar Publishing.
    7. Antonio M. Bento & Lawrence H. Goulder & Mark R. Jacobsen & Roger H. von Haefen, 2009. "Distributional and Efficiency Impacts of Increased US Gasoline Taxes," American Economic Review, American Economic Association, vol. 99(3), pages 667-699, June.
    8. Rutherford, Thomas F, 1999. "Applied General Equilibrium Modeling with MPSGE as a GAMS Subsystem: An Overview of the Modeling Framework and Syntax," Computational Economics, Springer;Society for Computational Economics, vol. 14(1-2), pages 1-46, October.
    9. Stavins, Robert N., 2008. "A Meaningful U.S. Cap-and-Trade System to Address Climate Change," Climate Change Modelling and Policy Working Papers 44469, Fondazione Eni Enrico Mattei (FEEM).
    10. Bovenberg, A.L. & Goulder, L.H., 1996. "Optimal environmental taxation in the presence of other taxes : General equilibrium analyses," Other publications TiSEM 5d4b7517-c5c8-4ef6-ab76-3, Tilburg University, School of Economics and Management.
    11. Palmer, Karen & Burtraw, Dallas, 2005. "Cost-effectiveness of renewable electricity policies," Energy Economics, Elsevier, vol. 27(6), pages 873-894, November.
    12. Fullerton, Don & Heutel, Garth, 2007. "The general equilibrium incidence of environmental taxes," Journal of Public Economics, Elsevier, vol. 91(3-4), pages 571-591, April.
    13. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    14. Wiser, Ryan & Namovicz, Christopher & Gielecki, Mark & Smith, Robert, 2007. "The Experience with Renewable Portfolio Standards in the United States," The Electricity Journal, Elsevier, vol. 20(4), pages 8-20, May.
    15. Rausch, Sebastian & Metcalf, Gilbert E. & Reilly, John M., 2011. "Distributional impacts of carbon pricing: A general equilibrium approach with micro-data for households," Energy Economics, Elsevier, vol. 33(S1), pages 20-33.
    16. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    17. Gilbert E. Metcalf, 2009. "Market-Based Policy Options to Control U.S. Greenhouse Gas Emissions," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 5-27, Spring.
    18. Lindall, Scott A. & Olson, Douglas C. & Alward, Gregory S., 2006. "Deriving Multi-Regional Models Using the IMPLAN National Trade Flows Model," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 36(1), pages 1-8.
    19. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    20. Paul, Anthony & Palmer, Karen & Woerman, Matt, 2013. "Modeling a clean energy standard for electricity: Policy design implications for emissions, supply, prices, and regions," Energy Economics, Elsevier, vol. 36(C), pages 108-124.
    21. Böhringer, Christoph & Rutherford, Thomos F., 2009. "Integrated assessment of energy policies: Decomposing top-down and bottom-up," Journal of Economic Dynamics and Control, Elsevier, vol. 33(9), pages 1648-1661, September.
    22. Rutherford, Thomas F., 1995. "Extension of GAMS for complementarity problems arising in applied economic analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 19(8), pages 1299-1324, November.
    23. Jean-Charles Hourcade, Mark Jaccard, Chris Bataille, and Frederic Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-12.
    24. Daniel Feenberg & Elisabeth Coutts, 1993. "An introduction to the TAXSIM model," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 12(1), pages 189-194.
    25. Lanz, Bruno & Rausch, Sebastian, 2011. "General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis," Energy Economics, Elsevier, vol. 33(5), pages 1035-1047, September.
    26. Arnold Harberger, 1964. "Taxation, Resource Allocation, and Welfare," NBER Chapters, in: The Role of Direct and Indirect Taxes in the Federal Reserve System, pages 25-80, National Bureau of Economic Research, Inc.
    27. Burtraw, Dallas & Palmer, Karen & Bharvirkar, Ranjit & Paul, Anthony, 2001. "The Effect of Allowance Allocation on the Cost of Carbon Emission Trading," RFF Working Paper Series dp-01-30-, Resources for the Future.
    28. Langniss, Ole & Wiser, Ryan, 2003. "The renewables portfolio standard in Texas: an early assessment," Energy Policy, Elsevier, vol. 31(6), pages 527-535, May.
    29. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    2. Lanz, Bruno & Rausch, Sebastian, 2011. "General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis," Energy Economics, Elsevier, vol. 33(5), pages 1035-1047, September.
    3. Bruno Lanz and Sebastian Rausch, 2016. "Emissions Trading in the Presence of Price-Regulated Polluting Firms: How Costly Are Free Allowances?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    4. Rausch, Sebastian & Yonezawa, Hidemichi, 2023. "Green technology policies versus carbon pricing: An intergenerational perspective," European Economic Review, Elsevier, vol. 154(C).
    5. Yuan, Mei & Metcalf, Gilbert & Reilly, John & Paltsev, Sergey, 2017. "Impacts of Costs of Advanced Technologies and Carbon Tax Rates on Revenue," Conference papers 332864, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Jan Abrell & Sebastian Rausch & Giacomo A. Schwarz, 2016. "Social Equity Concerns and Differentiated Environmental Taxes," CER-ETH Economics working paper series 16/262, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    7. Abrell, Jan & Rausch, Sebastian & Schwarz, Giacomo A., 2018. "How robust is the uniform emissions pricing rule to social equity concerns?," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 783-814.
    8. Martin T. Ross, Patrick T. Sullivan, Allen A. Fawcett, and Brooks M. Depro, 2014. "Investigating Technology Options for Climate Policies: Differentiated Roles in ADAGE," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    9. Martin T. Ross, 2018. "Regional Implications Of National Carbon Taxes," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-39, February.
    10. Tapia-Ahumada, Karen & Octaviano, Claudia & Rausch, Sebastian & Pérez-Arriaga, Ignacio, 2015. "Modeling intermittent renewable electricity technologies in general equilibrium models," Economic Modelling, Elsevier, vol. 51(C), pages 242-262.
    11. Lanz, Bruno & Rausch, Sebastian, 2012. "Cap-and-Trade Climate Policies with Price-Regulated Firms: How Costly Are Free Allowances?," Conference papers 332267, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Abrell, Jan & Rausch, Sebastian, 2016. "Cross-country electricity trade, renewable energy and European transmission infrastructure policy," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 87-113.
    13. Meng, Sam & Siriwardana, Mahinda & McNeill, Judith & Nelson, Tim, 2018. "The impact of an ETS on the Australian energy sector: An integrated CGE and electricity modelling approach," Energy Economics, Elsevier, vol. 69(C), pages 213-224.
    14. Florian Landis & Sebastian Rausch & Mirjam Kosch, 2018. "Differentiated Carbon Prices and the Economic Cost of Decarbonization," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 483-516, June.
    15. Rausch, Sebastian & Metcalf, Gilbert E. & Reilly, John M., 2011. "Distributional impacts of carbon pricing: A general equilibrium approach with micro-data for households," Energy Economics, Elsevier, vol. 33(S1), pages 20-33.
    16. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
    17. Florian Landis, 2019. "Cost distribution and equity of climate policy in Switzerland," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-28, December.
    18. Alex Hollingworth & Taylor Jaworski & Carl Kitchens & Ivan Rudik, 2022. "Economic Geography and the Efficiency of Environmental Regulation," CESifo Working Paper Series 9644, CESifo.
    19. Milad Maralani & Milad Maralani & Basil Sharp & Golbon Zakeri, 2016. "The Potential Impact of Industrial Energy Savings on The New Zealand Economy," EcoMod2016 9308, EcoMod.
    20. Moritz A. Drupp & Ulrike Kornek & Jasper N. Meya & Lutz Sager, 2021. "Inequality and the Environment: The Economics of a Two-Headed Hydra," CESifo Working Paper Series 9447, CESifo.

    More about this item

    Keywords

    Climate policy; Renewable energy; Electricity; Clean energy standards; Top-down; Bottom-up; General equilibrium modeling;
    All these keywords.

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:36:y:2014:i:2:p:556-585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.