IDEAS home Printed from https://ideas.repec.org/r/spr/psycho/v19y1954i2p97-116.html
   My bibliography  Save this item

Multivariate information transmission

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Frank Huettner, & Tamer Boyaci, & Yalcin Akcay, 2016. "Consumer choice under limited attention when options have different information costs," ESMT Research Working Papers ESMT-16-04, ESMT European School of Management and Technology, revised 04 Oct 2016.
  2. Yoshio Takane, 1987. "Analysis of contingency tables by ideal point discriminant analysis," Psychometrika, Springer;The Psychometric Society, vol. 52(4), pages 493-513, December.
  3. repec:hig:wpaper:98sti2019 is not listed on IDEAS
  4. Songyot Nakariyakul, 2019. "A hybrid gene selection algorithm based on interaction information for microarray-based cancer classification," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-17, February.
  5. Loet Leydesdorff, 2011. "“Structuration” by intellectual organization: the configuration of knowledge in relations among structural components in networks of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 499-520, August.
  6. Leydesdorff, Loet & Fritsch, Michael, 2006. "Measuring the knowledge base of regional innovation systems in Germany in terms of a Triple Helix dynamics," Research Policy, Elsevier, vol. 35(10), pages 1538-1553, December.
  7. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
  8. Abhinav Vepa & Amer Saleem & Kambiz Rakhshan & Alireza Daneshkhah & Tabassom Sedighi & Shamarina Shohaimi & Amr Omar & Nader Salari & Omid Chatrabgoun & Diana Dharmaraj & Junaid Sami & Shital Parekh &, 2021. "Using Machine Learning Algorithms to Develop a Clinical Decision-Making Tool for COVID-19 Inpatients," IJERPH, MDPI, vol. 18(12), pages 1-22, June.
  9. Inga Ivanova, 2022. "The relation between complexity and synergy in the case of China: different ways of predicting GDP growth in a complex and adaptive system," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(1), pages 195-215, February.
  10. Ki-Seok Kwon & Han Woo Park & Minho So & Loet Leydesdorff, 2012. "Has globalization strengthened South Korea’s national research system? National and international dynamics of the Triple Helix of scientific co-authorship relationships in South Korea," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(1), pages 163-176, January.
  11. Izabella Szakálné Kanó & Zsófia Vas & Slávka Klasová, 2023. "Emerging Synergies in Innovation Systems: Creative Industries in Central Europe," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 14(1), pages 450-471, March.
  12. Lengyel, Balázs & Leydesdorff, Loet, 2015. "The Effects of FDI on Innovation Systems in Hungarian Regions: Where is the Synergy Generated?," MPRA Paper 73945, University Library of Munich, Germany.
  13. Weimin Kang & Shuliang Zhao & Wei Song & Tao Zhuang, 2019. "Triple helix in the science and technology innovation centers of China from the perspective of mutual information: a comparative study between Beijing and Shanghai," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 921-940, March.
  14. Shuaiming Chen & Ximing Ji & Haipeng Shao, 2024. "Revealing the Community Structure of Urban Bus Networks: a Multi-view Graph Learning Approach," Networks and Spatial Economics, Springer, vol. 24(3), pages 589-619, September.
  15. Louis Verny & Nadir Sella & Séverine Affeldt & Param Priya Singh & Hervé Isambert, 2017. "Learning causal networks with latent variables from multivariate information in genomic data," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-25, October.
  16. Leydesdorff, Loet & Dolfsma, Wilfred & Van der Panne, Gerben, 2006. "Measuring the knowledge base of an economy in terms of triple-helix relations among 'technology, organization, and territory'," Research Policy, Elsevier, vol. 35(2), pages 181-199, March.
  17. Frank Gelens & Juho Äijälä & Louis Roberts & Misako Komatsu & Cem Uran & Michael A. Jensen & Kai J. Miller & Robin A. A. Ince & Max Garagnani & Martin Vinck & Andres Canales-Johnson, 2024. "Distributed representations of prediction error signals across the cortical hierarchy are synergistic," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  18. Irad Ben-Gal & Marcelo Bacher & Morris Amara & Erez Shmueli, 2023. "A Nonparametric Subspace Analysis Approach with Application to Anomaly Detection Ensembles," INFORMS Joural on Data Science, INFORMS, vol. 2(2), pages 99-115, October.
  19. Inga Ivanova, 2019. "Evolutionary Dynamics of Investors Expectations and Market Price Movement," Papers 1912.11216, arXiv.org, revised Dec 2023.
  20. Han Woo Park, 2014. "Mapping election campaigns through negative entropy: Triple and Quadruple Helix approach to South Korea’s 2012 presidential election," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 187-197, April.
  21. Frank Huettner, & Tamer Boyaci, & Yalcin Akcay, 2016. "Consumer choice under limited attention when alternatives have different information costs," ESMT Research Working Papers ESMT-16-04_R3, ESMT European School of Management and Technology, revised 26 Sep 2018.
  22. Mariusz Kubkowski & Jan Mielniczuk, 2021. "Asymptotic Distributions of Empirical Interaction Information," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 291-315, March.
  23. Inga A. Ivanova & Loet Leydesdorff, 2014. "A simulation model of the Triple Helix of university–industry–government relations and the decomposition of the redundancy," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 927-948, June.
  24. Carlos A. L. Pires & Abdel Hannachi, 2017. "Independent Subspace Analysis of the Sea Surface Temperature Variability: Non-Gaussian Sources and Sensitivity to Sampling and Dimensionality," Complexity, Hindawi, vol. 2017, pages 1-23, August.
  25. Petras Rupšys, 2019. "Understanding the Evolution of Tree Size Diversity within the Multivariate Nonsymmetrical Diffusion Process and Information Measures," Mathematics, MDPI, vol. 7(8), pages 1-22, August.
  26. Jeffrey A Edlund & Nicolas Chaumont & Arend Hintze & Christof Koch & Giulio Tononi & Christoph Adami, 2011. "Integrated Information Increases with Fitness in the Evolution of Animats," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-13, October.
  27. Frank Huettner, & Tamer Boyaci, & Yalcin Akcay, 2016. "Consumer choice under limited attention when alternatives have different information costs," ESMT Research Working Papers ESMT-16-04_R2, ESMT European School of Management and Technology, revised 28 Feb 2018.
  28. Loet Leydesdorff & Han Woo Park & Balazs Lengyel, 2014. "A routine for measuring synergy in university–industry–government relations: mutual information as a Triple-Helix and Quadruple-Helix indicator," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 27-35, April.
  29. Loet Leydesdorff & Inga Ivanova, 2021. "The measurement of “interdisciplinarity” and “synergy” in scientific and extra‐scientific collaborations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(4), pages 387-402, April.
  30. Antonella Tutino, 2013. "Rationally inattentive consumption choices," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 16(3), pages 421-439, July.
  31. Van Puyenbroeck, Tom & De Bruyne, Karolien & Sels, Luc, 2012. "More than ‘Mutual Information’: Educational and sectoral gender segregation and their interaction on the Flemish labor market," Labour Economics, Elsevier, vol. 19(1), pages 1-8.
  32. Inga Ivanova & Oivind Strand & Loet Leydesdorff, 2019. "The Synergy and Cycle Values in Regional Innovation Systems: The Case of Norway," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 13(1), pages 48-61.
  33. Lucien Preuss & Helmut Vorkauf, 1997. "The knowledge content of statistical data," Psychometrika, Springer;The Psychometric Society, vol. 62(1), pages 133-161, March.
  34. Strand, Øivind & Leydesdorff, Loet, 2013. "Where is synergy indicated in the Norwegian innovation system? Triple-Helix relations among technology, organization, and geography," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 471-484.
  35. Loet Leydesdorff & Lutz Bornmann, 2020. "“Interdisciplinarity” and “Synergy” in the Œuvre of Judit Bar-Ilan," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(3), pages 1247-1260, June.
  36. Park, Han Woo & Leydesdorff, Loet, 2010. "Longitudinal trends in networks of university-industry-government relations in South Korea: The role of programmatic incentives," Research Policy, Elsevier, vol. 39(5), pages 640-649, June.
  37. Gutiérrez Ortega, Armando & Mungaray Lagarda, Alejandro & Osorio Novela, Germán, 2022. "Midiendo la incertidumbre en sistemas de innovación de Triple Hélice [Measuring uncertainty in Triple Helix innovation systems]," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 33(1), pages 310-325, June.
  38. W. Garner & William McGill, 1956. "The relation between information and variance analyses," Psychometrika, Springer;The Psychometric Society, vol. 21(3), pages 219-228, September.
  39. Lucio-Arias, Diana & Leydesdorff, Loet, 2009. "The dynamics of exchanges and references among scientific texts, and the autopoiesis of discursive knowledge," Journal of Informetrics, Elsevier, vol. 3(3), pages 261-271.
  40. Porto-Gomez, Igone & Zabala-Iturriagagoitia, Jon Mikel & Leydesdorff, Loet, 2019. "Innovation systems in México: A matter of missing synergies," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
  41. Jung Cheol Shin & Soo Jeung Lee & Yangson Kim, 2012. "Knowledge-based innovation and collaboration: a triple-helix approach in Saudi Arabia," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(1), pages 311-326, January.
  42. Xiaojun Hu & Xian Li & Ronald Rousseau, 2021. "Mathematical reflections on Triple Helix calculations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8581-8587, October.
  43. Loet Leydesdorff & Igone Porto-Gomez, 2019. "Measuring the expected synergy in Spanish regional and national systems of innovation," The Journal of Technology Transfer, Springer, vol. 44(1), pages 189-209, February.
  44. Loet Leydesdorff & Ping Zhou, 2014. "Measuring the knowledge-based economy of China in terms of synergy among technological, organizational, and geographic attributes of firms," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1703-1719, March.
  45. Inga Ivanova & Oivind Strand & Loet Leydesdorff, 2014. "Synergy cycles in the Norwegian innovation system: The relation between synergy and cycle values," Papers 1409.2760, arXiv.org.
  46. Dennis Knepp & Doris Entwisle, 1969. "Testing significance of differences between two chi-squares," Psychometrika, Springer;The Psychometric Society, vol. 34(3), pages 331-333, September.
  47. Loet Leydesdorff & Wilfred Dolfsma & Gerben Van der Panne, 2010. "Measuring the Knowledge Base of an Economy in Terms of Triple-Helix Relations," Chapters, in: Riccardo Viale & Henry Etzkowitz (ed.), The Capitalization of Knowledge, chapter 11, Edward Elgar Publishing.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.