IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "The Egalitarian Solution and Reduced Game Properties in Convex Games"

by Dutta, B

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as
in new window


  1. Jean-Yves Jaffray & Philippe Mongin, 2003. "Constrained egalitarianism in a simple redistributive model," Theory and Decision, Springer, vol. 54(1), pages 33-56, February.
  2. Emre Doğan, 2016. "Absence-proofness: Group stability beyond the core," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(3), pages 601-616, August.
  3. Jens Leth Hougaard & Aleksandrs Smilgins, 2014. "Risk Capital Allocation: The Lorenz Set," MSAP Working Paper Series 03_2014, University of Copenhagen, Department of Food and Resource Economics.
  4. Mutuswami, Suresh, 2004. "Strategyproof cost sharing of a binary good and the egalitarian solution," Mathematical Social Sciences, Elsevier, vol. 48(3), pages 271-280, November.
  5. Klijn, F. & Slikker, M. & Tijs, S.H. & Zarzuelo, J., 1998. "Characterizations of the Egalitarian Solution for Convex Games," Discussion Paper 1998-33, Tilburg University, Center for Economic Research.
  6. Laurent Lamy, 2009. "Ascending auctions: some impossibility results and their resolutions with final price discounts," PSE Working Papers halshs-00575076, HAL.
  7. Branzei, Rodica & Dimitrov, Dinko & Tijs, Stef, 2004. "Egalitarianism in convex fuzzy games," Mathematical Social Sciences, Elsevier, vol. 47(3), pages 313-325, May.
  8. Arin Aguirre, Francisco Javier, 2003. "Egalitarian distributions in coalitional models: The Lorenz criterion," IKERLANAK 2003-02, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
  9. Theo Driessen, 1996. "On the reduced game property for and the axiomatization of the T -value of TU-games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(1), pages 165-185, June.
  10. Koster, Maurice, 2002. "Hierarchical constrained egalitarianism in TU-games," Mathematical Social Sciences, Elsevier, vol. 43(2), pages 251-265, March.
  11. Hougaard, Jens Leth & Østerdal, Lars Peter, 2010. "Monotonicity of social welfare optima," Games and Economic Behavior, Elsevier, vol. 70(2), pages 392-402, November.
  12. Chaturvedi, Rakesh, 2016. "Efficient coalitional bargaining with noncontingent offers," Games and Economic Behavior, Elsevier, vol. 100(C), pages 125-141.
  13. Hougaard, Jens Leth & Smilgins, Aleksandrs, 2016. "Risk capital allocation with autonomous subunits: The Lorenz set," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 151-157.
  14. Francesc Llerena & Llúcia Mauri, 2016. "Reduced games and egalitarian solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 1053-1069, November.
  15. Llerena Garrés, Francesc & Mauri Masdeu, Llúcia, 2016. "On the existence of the Dutta-Ray’s egalitarian solution," Working Papers 2072/266573, Universitat Rovira i Virgili, Department of Economics.
  16. Anna Bogomolnaia & Herve Moulin, 2004. "Random Matching Under Dichotomous Preferences," Econometrica, Econometric Society, vol. 72(1), pages 257-279, 01.
  17. Francesc Llerena & Carles Rafels & Cori Vilella, 2008. "A simple procedure for computing strong constrained egalitarian allocations," Working Papers 327, Barcelona Graduate School of Economics.
  18. Vincent Iehlé, 2015. "The lattice structure of the S-Lorenz core," Theory and Decision, Springer, vol. 78(1), pages 141-151, January.
  19. Arin Aguirre, Francisco Javier & Feltkamp, Vincent, 2005. "Implementing with veto players: a simple non cooperative game," IKERLANAK 2005-17, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
  20. Koster, M.A.L., 1999. "Weighted Constrained Egalitarianism in TU-Games," Discussion Paper 1999-107, Tilburg University, Center for Economic Research.
  21. William Thomson, 2011. "Consistency and its converse: an introduction," Review of Economic Design, Springer;Society for Economic Design, vol. 15(4), pages 257-291, December.
  22. Francesc Llerena & Cori Vilella, 2013. "An axiomatic characterization of the strong constrained egalitarian solution," Economics Bulletin, AccessEcon, vol. 33(2), pages 1438-1445.
  23. Arin, Javier & Kuipers, Jeroen & Vermeulen, Dries, 2003. "Some characterizations of egalitarian solutions on classes of TU-games," Mathematical Social Sciences, Elsevier, vol. 46(3), pages 327-345, December.
  24. Klijn, Flip & Slikker, Marco & Tijs, Stef & Zarzuelo, Jose, 2000. "The egalitarian solution for convex games: some characterizations," Mathematical Social Sciences, Elsevier, vol. 40(1), pages 111-121, July.
  25. Llerena Garrés, Francesc & Mauri Masdeu, Llúcia, 2014. "On reduced games and the lexmax solution," Working Papers 2072/237591, Universitat Rovira i Virgili, Department of Economics.
  26. Elena Yanovskaya, 2016. "An Extension of a Class of Cost Sharing Methods to the Solutions of the Class of Two-Person Cooperative Games," HSE Working papers WP BRP 127/EC/2016, National Research University Higher School of Economics.
  27. Dietzenbacher, Bas & Borm, Peter & Hendrickx, Ruud, 2016. "The Procedural Egalitarian Solution," Discussion Paper 2016-041, Tilburg University, Center for Economic Research.
  28. Lee, Joosung & Driessen, Theo S.H., 2012. "Sequentially two-leveled egalitarianism for TU games: Characterization and application," European Journal of Operational Research, Elsevier, vol. 220(3), pages 736-743.
  29. Oishi, Takayuki & Nakayama, Mikio & Hokari, Toru & Funaki, Yukihiko, 2016. "Duality and anti-duality in TU games applied to solutions, axioms, and axiomatizations," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 44-53.
  30. Arin, J. & Feltkamp, V., 2007. "Coalitional games with veto players: Consistency, monotonicity and Nash outcomes," Journal of Mathematical Economics, Elsevier, vol. 43(7-8), pages 855-870, September.
  31. Llerena Garrés, Francesc & Mauri Masdeu, Llúcia, 2014. "A note on the Lorenz-maximal allocations in the imputation set," Working Papers 2072/228404, Universitat Rovira i Virgili, Department of Economics.
  32. Brânzei, R. & Llorca, N. & Sánchez-Soriano, J. & Tijs, S.H., 2007. "Egalitarianism in Multi-Choice Games," Discussion Paper 2007-55, Tilburg University, Center for Economic Research.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.