IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "The Egalitarian Solution and Reduced Game Properties in Convex Games"

by Dutta, B

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Branzei, Rodica & Dimitrov, Dinko & Tijs, Stef, 2004. "Egalitarianism in convex fuzzy games," Mathematical Social Sciences, Elsevier, vol. 47(3), pages 313-325, May.
  2. Koster, Maurice, 2002. "Hierarchical constrained egalitarianism in TU-games," Mathematical Social Sciences, Elsevier, vol. 43(2), pages 251-265, March.
  3. Oishi, Takayuki & Nakayama, Mikio & Hokari, Toru & Funaki, Yukihiko, 2016. "Duality and anti-duality in TU games applied to solutions, axioms, and axiomatizations," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 44-53.
  4. Thomson, W., 1998. "Consistency and its Converse: an Introduction," RCER Working Papers 448, University of Rochester - Center for Economic Research (RCER).
  5. Lee, Joosung & Driessen, Theo S.H., 2012. "Sequentially two-leveled egalitarianism for TU games: Characterization and application," European Journal of Operational Research, Elsevier, vol. 220(3), pages 736-743.
  6. Hougaard, Jens Leth & Smilgins, Aleksandrs, 2016. "Risk capital allocation with autonomous subunits: The Lorenz set," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 151-157.
  7. J.- Y. Jaffray & Ph. Mongin, 1998. "Constrained egalitarianism in a simple redistributive model," THEMA Working Papers 98-37, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  8. Moulin, Herve & Bogomolnaia, Anna, 2001. "Random Matching under Dichotomous Preferences," Working Papers 2001-03, Rice University, Department of Economics.
  9. Mutuswami, Suresh, 2004. "Strategyproof cost sharing of a binary good and the egalitarian solution," Mathematical Social Sciences, Elsevier, vol. 48(3), pages 271-280, November.
  10. Klijn, F. & Slikker, M. & Tijs, S.H. & Zarzuelo, I., 2000. "The egalitarian solution for convex games : Some characterizations," Other publications TiSEM 614b77cd-430c-4048-856f-8, Tilburg University, School of Economics and Management.
  11. Dietzenbacher, Bas & Borm, Peter & Hendrickx, Ruud, 2016. "The Procedural Egalitarian Solution," Discussion Paper 2016-041, Tilburg University, Center for Economic Research.
  12. Llerena Garrés, Francesc & Vilella Bach, Misericòrdia, 2012. "An axiomatic characterization of the strong constrained egalitarian solution," Working Papers 2072/203157, Universitat Rovira i Virgili, Department of Economics.
  13. Vincent Iehlé, 2015. "The lattice structure of the S-Lorenz core," Post-Print halshs-00846826, HAL.
  14. Theo Driessen, 1996. "On the reduced game property for and the axiomatization of the T -value of TU-games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(1), pages 165-185, June.
  15. Jens Leth Hougaard & Aleksandrs Smilgins, 2014. "Risk Capital Allocation: The Lorenz Set," MSAP Working Paper Series 03_2014, University of Copenhagen, Department of Food and Resource Economics.
  16. Elena Yanovskaya, 2016. "An Extension of a Class of Cost Sharing Methods to the Solutions of the Class of Two-Person Cooperative Games," HSE Working papers WP BRP 127/EC/2016, National Research University Higher School of Economics.
  17. Arin, Javier & Kuipers, Jeroen & Vermeulen, Dries, 2003. "Some characterizations of egalitarian solutions on classes of TU-games," Mathematical Social Sciences, Elsevier, vol. 46(3), pages 327-345, December.
  18. repec:hal:wpaper:halshs-00575076 is not listed on IDEAS
  19. Laurent Lamy, 2009. "Ascending auctions: some impossibility results and their resolutions with final price discounts," PSE Working Papers halshs-00575076, HAL.
  20. Koster, M.A.L., 1999. "Weighted Constrained Egalitarianism in TU-Games," Discussion Paper 1999-107, Tilburg University, Center for Economic Research.
  21. Francesc Llerena & Carles Rafels & Cori Vilella, 2008. "A simple procedure for computing strong constrained egalitarian allocations," Working Papers 327, Barcelona Graduate School of Economics.
  22. repec:hal:wpaper:halshs-00846826 is not listed on IDEAS
  23. Arin, J. & Feltkamp, V., 2007. "Coalitional games with veto players: Consistency, monotonicity and Nash outcomes," Journal of Mathematical Economics, Elsevier, vol. 43(7-8), pages 855-870, September.
  24. Hougaard, Jens Leth & Østerdal, Lars Peter, 2010. "Monotonicity of social welfare optima," Games and Economic Behavior, Elsevier, vol. 70(2), pages 392-402, November.
  25. Klijn, F. & Slikker, M. & Tijs, S.H. & Zarzuelo, J., 1998. "Characterizations of the Egalitarian Solution for Convex Games," Discussion Paper 1998-33, Tilburg University, Center for Economic Research.
  26. Llerena Garrés, Francesc & Mauri Masdeu, Llúcia, 2014. "A note on the Lorenz-maximal allocations in the imputation set," Working Papers 2072/228404, Universitat Rovira i Virgili, Department of Economics.
  27. Emre Doğan, 2016. "Absence-proofness: Group stability beyond the core," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(3), pages 601-616, August.
  28. Francesc Llerena & Llúcia Mauri, 2016. "Reduced games and egalitarian solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 1053-1069, November.
  29. Llerena Garrés, Francesc & Mauri Masdeu, Llúcia, 2016. "On the existence of the Dutta-Ray’s egalitarian solution," Working Papers 2072/266573, Universitat Rovira i Virgili, Department of Economics.
  30. Brânzei, R. & Llorca, N. & Sánchez-Soriano, J. & Tijs, S.H., 2007. "Egalitarianism in Multi-Choice Games," Discussion Paper 2007-55, Tilburg University, Center for Economic Research.
  31. Llerena Garrés, Francesc & Mauri Masdeu, Llúcia, 2014. "On reduced games and the lexmax solution," Working Papers 2072/237591, Universitat Rovira i Virgili, Department of Economics.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.