IDEAS home Printed from https://ideas.repec.org/r/spr/finsto/v5y2001i3p343-355.html

Fractional Brownian motion, random walks and binary market models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Garzón, J. & Gorostiza, L.G. & León, J.A., 2009. "A strong uniform approximation of fractional Brownian motion by means of transport processes," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3435-3452, October.
  2. Fernando Cordero & Lavinia Perez-Ostafe, 2014. "Critical transaction costs and 1-step asymptotic arbitrage in fractional binary markets," Papers 1407.8068, arXiv.org.
  3. Nieminen, Ari, 2004. "Fractional Brownian motion and Martingale-differences," Statistics & Probability Letters, Elsevier, vol. 70(1), pages 1-10, October.
  4. Gloter, A. & Hoffmann, M., 2004. "Stochastic volatility and fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 113(1), pages 143-172, September.
  5. Dorsaf Cherif & Emmanuel Lépinette, 2023. "No-arbitrage conditions and pricing from discrete-time to continuous-time strategies," Annals of Finance, Springer, vol. 19(2), pages 141-168, June.
  6. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
  7. R. Vilela Mendes & M. J. Oliveira & A. M. Rodrigues, 2012. "The fractional volatility model: No-arbitrage, leverage and completeness," Papers 1205.2866, arXiv.org.
  8. Cai, Chunhao & Cheng, Xuwen & Xiao, Weilin & Wu, Xiang, 2019. "Parameter identification for mixed fractional Brownian motions with the drift parameter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
  9. Eric Djeutcha & Jules Sadefo Kamdem, 2024. "Pricing for a vulnerable bull spread options using a mixed modified fractional Hull–White–Vasicek model," Annals of Operations Research, Springer, vol. 334(1), pages 101-131, March.
  10. Changhong Guo & Shaomei Fang & Yong He, 2023. "Derivation and Application of Some Fractional Black–Scholes Equations Driven by Fractional G-Brownian Motion," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1681-1705, April.
  11. Chr. Framstad, Nils, 2011. "On free lunches in random walk markets with short-sale constraints and small transaction costs, and weak convergence to Gaussian continuous-time processes," Memorandum 20/2011, Oslo University, Department of Economics.
  12. Kubilius, K., 2008. "On the convergence of stochastic integrals with respect to p-semimartingales," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2528-2535, October.
  13. Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019. "Pricing Derivatives In Hermite Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
  14. Power, Gabriel J. & Turvey, Calum G., 2010. "Long-range dependence in the volatility of commodity futures prices: Wavelet-based evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 79-90.
  15. Horvath, Blanka & Jacquier, Antoine & Muguruza, Aitor & Søjmark, Andreas, 2024. "Functional central limit theorems for rough volatility," LSE Research Online Documents on Economics 122848, London School of Economics and Political Science, LSE Library.
  16. Bertin, Karine & Torres, Soledad & Tudor, Ciprian A., 2011. "Drift parameter estimation in fractional diffusions driven by perturbed random walks," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 243-249, February.
  17. Cordero, Fernando & Klein, Irene & Perez-Ostafe, Lavinia, 2016. "Asymptotic proportion of arbitrage points in fractional binary markets," Stochastic Processes and their Applications, Elsevier, vol. 126(2), pages 315-336.
  18. Dorsaf Cherif & Emmanuel Lépinette, 2023. "No-arbitrage conditions and pricing from discrete-time to continuous-time strategies," Post-Print hal-03284660, HAL.
  19. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Sojmark, 2017. "Functional central limit theorems for rough volatility," Papers 1711.03078, arXiv.org, revised Nov 2023.
  20. Azmoodeh Ehsan & Mishura Yuliya & Valkeila Esko, 2009. "On hedging European options in geometric fractional Brownian motion market model," Statistics & Risk Modeling, De Gruyter, vol. 27(02), pages 129-144, December.
  21. Bardina, X. & Nourdin, I. & Rovira, C. & Tindel, S., 2010. "Weak approximation of a fractional SDE," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 39-65, January.
  22. Changhong Guo & Shaomei Fang & Yong He, 2023. "A Generalized Stochastic Process: Fractional G-Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-34, March.
  23. Daniel Conus & Mackenzie Wildman, 2016. "A Gaussian Markov alternative to fractional Brownian motion for pricing financial derivatives," Papers 1608.03428, arXiv.org.
  24. Klüppelberg, Claudia & Kühn, Christoph, 2004. "Fractional Brownian motion as a weak limit of Poisson shot noise processes--with applications to finance," Stochastic Processes and their Applications, Elsevier, vol. 113(2), pages 333-351, October.
  25. Inoue, Akihiko & Nakano, Yumiharu & Anh, Vo, 2007. "Binary market models with memory," Statistics & Probability Letters, Elsevier, vol. 77(3), pages 256-264, February.
  26. Gapeev Pavel V. & Sottinen Tommi & Valkeila Esko, 2011. "Robust replication in H-self-similar Gaussian market models under uncertainty," Statistics & Risk Modeling, De Gruyter, vol. 28(1), pages 37-50, March.
  27. Slominski, Leszek & Ziemkiewicz, Bartosz, 2009. "On weak approximations of integrals with respect to fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 543-552, February.
  28. Zhang, Pu & Sun, Qi & Xiao, Wei-Lin, 2014. "Parameter identification in mixed Brownian–fractional Brownian motions using Powell's optimization algorithm," Economic Modelling, Elsevier, vol. 40(C), pages 314-319.
  29. Hasanjan Sayit, 2013. "Absence of arbitrage in a general framework," Annals of Finance, Springer, vol. 9(4), pages 611-624, November.
  30. Yuliya Mishura & Kostiantyn Ralchenko & Sergiy Shklyar, 2020. "General Conditions of Weak Convergence of Discrete-Time Multiplicative Scheme to Asset Price with Memory," Risks, MDPI, vol. 8(1), pages 1-29, January.
  31. Emara, Noha & Ma, Jinpeng, 2019. "An Analysis of the Seasonal Cycle and the Business Cycle," MPRA Paper 99310, University Library of Munich, Germany.
  32. Rostek, Stefan & Schöbel, Rainer, 2006. "Risk preference based option pricing in a fractional Brownian market," Tübinger Diskussionsbeiträge 299, University of Tübingen, School of Business and Economics.
  33. Potgieter, Petrus H., 2009. "Fractal asset returns, arbitrage and option pricing," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1792-1795.
  34. Bender, Christian & Parczewski, Peter, 2018. "Discretizing Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 128(8), pages 2489-2537.
  35. Araya, Héctor & Bahamonde, Natalia & Torres, Soledad & Viens, Frederi, 2019. "Donsker type theorem for fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 1-8.
  36. Giulia Rotundo & Roy Cerqueti, 2010. "Options With Underlying Asset Driven By A Fractional Brownian Motion: Crossing Barriers Estimates," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 109-118.
  37. Zhigang Tong, 2016. "Option pricing in stochastic volatility models driven by fractional Lévy processes," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 56-75.
  38. Hideharu Funahashi & Masaaki Kijima, 2017. "Does the Hurst index matter for option prices under fractional volatility?," Annals of Finance, Springer, vol. 13(1), pages 55-74, February.
  39. Stoyan V. Stoyanov & Yong Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2017. "Option pricing for Informed Traders," Papers 1711.09445, arXiv.org.
  40. Wang, Wensheng, 2019. "Asymptotics for discrete time hedging errors under fractional Black–Scholes models," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 160-170.
  41. Turvey, Calum G., 2007. "A note on scaled variance ratio estimation of the Hurst exponent with application to agricultural commodity prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 155-165.
  42. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Søjmark, 2024. "Functional central limit theorems for rough volatility," Finance and Stochastics, Springer, vol. 28(3), pages 615-661, July.
  43. repec:hal:wpaper:hal-03284660 is not listed on IDEAS
  44. Holger Fink & Christian Scherr, 2014. "CDS pricing with long memory via fractional Lévy processes," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-35.
  45. Fernando Cordero & Lavinia Perez-Ostafe, 2015. "Critical Transaction Costs And 1-Step Asymptotic Arbitrage In Fractional Binary Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-26.
  46. Sottinen Tommi & Valkeila Esko, 2003. "On arbitrage and replication in the fractional Black–Scholes pricing model," Statistics & Risk Modeling, De Gruyter, vol. 21(2), pages 93-108, February.
  47. Dufera, Tamirat Temesgen, 2024. "Fractional Brownian motion in option pricing and dynamic delta hedging: Experimental simulations," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
  48. Nenghui Kuang & Huantian Xie, 2015. "Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 75-91, February.
  49. Christian Bender & Tommi Sottinen & Esko Valkeila, 2010. "Fractional processes as models in stochastic finance," Papers 1004.3106, arXiv.org.
  50. Rostek, S. & Schöbel, R., 2013. "A note on the use of fractional Brownian motion for financial modeling," Economic Modelling, Elsevier, vol. 30(C), pages 30-35.
  51. Vilela Mendes, R. & Oliveira, M.J. & Rodrigues, A.M., 2015. "No-arbitrage, leverage and completeness in a fractional volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 470-478.
  52. Christian Bender & Robert J. Elliott, 2004. "Arbitrage in a Discrete Version of the Wick-Fractional Black-Scholes Market," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 935-945, November.
  53. Héctor Araya & Meryem Slaoui & Soledad Torres, 2022. "Bayesian inference for fractional Oscillating Brownian motion," Computational Statistics, Springer, vol. 37(2), pages 887-907, April.
  54. Hideharu Funahashi, 2017. "Pricing derivatives with fractional volatility," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-28, March.
  55. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
  56. Alexandra Chronopoulou & Frederi Viens, 2012. "Estimation and pricing under long-memory stochastic volatility," Annals of Finance, Springer, vol. 8(2), pages 379-403, May.
  57. Luis G. Gorostiza & Reyla A. Navarro & Eliane R. Rodrigues, 2004. "Some Long-Range Dependence Processes Arising from Fluctuations of Particle Systems," RePAd Working Paper Series lrsp-TRS401, Département des sciences administratives, UQO.
  58. Erhan Bayraktar & Ulrich Horst & Ronnie Sircar, 2006. "A Limit Theorem for Financial Markets with Inert Investors," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 789-810, November.
  59. Zhang, Pu & Xiao, Wei-lin & Zhang, Xi-li & Niu, Pan-qiang, 2014. "Parameter identification for fractional Ornstein–Uhlenbeck processes based on discrete observation," Economic Modelling, Elsevier, vol. 36(C), pages 198-203.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.