IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v69y2024ipbs1062940823001407.html
   My bibliography  Save this article

Fractional Brownian motion in option pricing and dynamic delta hedging: Experimental simulations

Author

Listed:
  • Dufera, Tamirat Temesgen

Abstract

This research examines the impact of fractional Brownian motion (fBm) on option pricing and dynamic delta hedging. Through experimental simulations, we analyze the influence of the Hurst exponent on option price prediction. Our findings highlight the necessity for continuous calibration of the Hurst exponent for a specific market dataset. By estimating option prices using fBm, we evaluate price prediction accuracy and explore fBm’s benefits in option pricing models. We also investigate dynamic delta hedging strategies for call options within the fBm framework, providing an algorithm and code that consider the Hurst exponent. The study’s insights contribute to advancing financial modeling and risk management practices, illuminating the dynamic nature of market phenomena and underscoring calibration’s significance in capturing market dynamics. The findings emphasize the dynamic interplay between the Hurst exponent and option pricing, offering valuable implications for effective risk management strategies.

Suggested Citation

  • Dufera, Tamirat Temesgen, 2024. "Fractional Brownian motion in option pricing and dynamic delta hedging: Experimental simulations," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
  • Handle: RePEc:eee:ecofin:v:69:y:2024:i:pb:s1062940823001407
    DOI: 10.1016/j.najef.2023.102017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940823001407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2023.102017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gong, Xiaoli & Zhuang, Xintian, 2016. "Option pricing for stochastic volatility model with infinite activity Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 1-10.
    2. Robert J. Elliott & John Van Der Hoek, 2003. "A General Fractional White Noise Theory And Applications To Finance," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 301-330, April.
    3. Song, Wanqing & Li, Ming & Li, Yuanyuan & Cattani, Carlo & Chi, Chi-Hung, 2019. "Fractional Brownian motion: Difference iterative forecasting models," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 347-355.
    4. Tommi Sottinen, 2001. "Fractional Brownian motion, random walks and binary market models," Finance and Stochastics, Springer, vol. 5(3), pages 343-355.
    5. Xiang Wang & Jessica Li & Jichun Li, 2023. "A Deep Learning Based Numerical PDE Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 149-164, June.
    6. Tomas Björk & Henrik Hult, 2005. "A note on Wick products and the fractional Black-Scholes model," Finance and Stochastics, Springer, vol. 9(2), pages 197-209, April.
    7. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
    8. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    9. Lisa Borland, 2002. "A theory of non-Gaussian option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 415-431.
    10. Costa, Rogério L. & Vasconcelos, G.L., 2003. "Long-range correlations and nonstationarity in the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 231-248.
    11. R. L. Costa & G. L. Vasconcelos, 2003. "Long-range correlations and nonstationarity in the Brazilian stock market," Papers cond-mat/0302342, arXiv.org.
    12. Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.
    13. Lisa Borland, 2002. "A Theory of Non_Gaussian Option Pricing," Papers cond-mat/0205078, arXiv.org, revised Dec 2002.
    14. Erhan Bayraktar & Ulrich Horst & Ronnie Sircar, 2006. "A Limit Theorem for Financial Markets with Inert Investors," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 789-810, November.
    15. Foad Shokrollahi, 2020. "The Valuation Of European Option Under Subdiffusive Fractional Brownian Motion Of The Short Rate," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(04), pages 1-16, June.
    16. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    17. Stefan Rostek, 2009. "Option Pricing in Fractional Brownian Markets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-00331-8, October.
    18. Stefan Rostek, 2009. "Risk Preference Based Option Pricing in a Continuous Time Fractional Brownian Market," Lecture Notes in Economics and Mathematical Systems, in: Option Pricing in Fractional Brownian Markets, chapter 5, pages 79-110, Springer.
    19. Rostek, S. & Schöbel, R., 2013. "A note on the use of fractional Brownian motion for financial modeling," Economic Modelling, Elsevier, vol. 30(C), pages 30-35.
    20. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    21. Sethi, Suresh P. & Lehoczky, John P., 1981. "A comparison of the Ito and Stratonovich formulations of problems in finance," Journal of Economic Dynamics and Control, Elsevier, vol. 3(1), pages 343-356, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rostek, S. & Schöbel, R., 2013. "A note on the use of fractional Brownian motion for financial modeling," Economic Modelling, Elsevier, vol. 30(C), pages 30-35.
    2. Stoyan V. Stoyanov & Yong Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2017. "Option pricing for Informed Traders," Papers 1711.09445, arXiv.org.
    3. Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019. "Pricing Derivatives In Hermite Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
    4. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    5. Changhong Guo & Shaomei Fang & Yong He, 2023. "Derivation and Application of Some Fractional Black–Scholes Equations Driven by Fractional G-Brownian Motion," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1681-1705, April.
    6. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
    7. Rostek, Stefan & Schöbel, Rainer, 2006. "Risk preference based option pricing in a fractional Brownian market," Tübinger Diskussionsbeiträge 299, University of Tübingen, School of Business and Economics.
    8. Christian Bender & Tommi Sottinen & Esko Valkeila, 2010. "Fractional processes as models in stochastic finance," Papers 1004.3106, arXiv.org.
    9. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, December.
    10. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    11. Sosa-Correa, William O. & Ramos, Antônio M.T. & Vasconcelos, Giovani L., 2018. "Investigation of non-Gaussian effects in the Brazilian option market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 525-539.
    12. Changhong Guo & Shaomei Fang & Yong He, 2023. "A Generalized Stochastic Process: Fractional G-Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-34, March.
    13. Wang, Xiao-Tian, 2011. "Scaling and long-range dependence in option pricing V: Multiscaling hedging and implied volatility smiles under the fractional Black–Scholes model with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1623-1634.
    14. Vilela Mendes, R. & Oliveira, M.J. & Rodrigues, A.M., 2015. "No-arbitrage, leverage and completeness in a fractional volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 470-478.
    15. Farshid Mehrdoust & Ali Reza Najafi, 2018. "Pricing European Options under Fractional Black–Scholes Model with a Weak Payoff Function," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 685-706, August.
    16. Xiao, Weilin & Zhang, Weiguo & Xu, Weijun & Zhang, Xili, 2012. "The valuation of equity warrants in a fractional Brownian environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1742-1752.
    17. Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
    18. Araneda, Axel A. & Bertschinger, Nils, 2021. "The sub-fractional CEV model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    19. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    20. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.

    More about this item

    Keywords

    European options; Fractional Brownian motion; Black–Scholes–Merton model; Dynamic delta hedging; Hurst exponent; Simulation;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:69:y:2024:i:pb:s1062940823001407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.