IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1612.07016.html
   My bibliography  Save this paper

Pricing Derivatives in Hermite Markets

Author

Listed:
  • Svetlozar T. Rachev
  • Stefan Mittnik
  • Frank J. Fabozzi

Abstract

We introduce Hermite fractional financial markets, where market uncertainties are described by multidimensional Hermite motions. Hermite markets include as particular cases financial markets driven by multivariate fractional Brownian motion and multivariate Rosenblatt motion. Conditions for no-arbitrage and market completeness for Hermite markets are derived. Perpetual derivatives, bonds forwards, and futures are priced. The corresponding partial and partial-differential equations are derived.

Suggested Citation

  • Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2016. "Pricing Derivatives in Hermite Markets," Papers 1612.07016, arXiv.org, revised Dec 2016.
  • Handle: RePEc:arx:papers:1612.07016
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1612.07016
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sottinen Tommi & Valkeila Esko, 2003. "On arbitrage and replication in the fractional Black–Scholes pricing model," Statistics & Risk Modeling, De Gruyter, vol. 21(2/2003), pages 93-108, February.
    2. Pipiras, Vladas & Taqqu, Murad S., 2010. "Regularization and integral representations of Hermite processes," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 2014-2023, December.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    4. Cipian Necula, 2008. "Option Pricing in a Fractional Brownian Motion Environment," Advances in Economic and Financial Research - DOFIN Working Paper Series 2, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    5. Gu, Hui & Liang, Jin-Rong & Zhang, Yun-Xiu, 2012. "Time-changed geometric fractional Brownian motion and option pricing with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3971-3977.
    6. Robert J. Elliott & John Van Der Hoek, 2003. "A General Fractional White Noise Theory And Applications To Finance," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 301-330, April.
    7. Björk, Tomas & Hult, Henrik, 2005. "A Note on Wick Products and the Fractional Black-Scholes Model," SSE/EFI Working Paper Series in Economics and Finance 596, Stockholm School of Economics.
    8. Chen, Zhenlong & Xu, Lin & Zhu, Dongjin, 2015. "Generalized continuous time random walks and Hermite processes," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 44-53.
    9. Hans Follmer & Alexander Schied, 2013. "Probabilistic aspects of finance," Papers 1309.7759, arXiv.org.
    10. Tomas Björk & Henrik Hult, 2005. "A note on Wick products and the fractional Black-Scholes model," Finance and Stochastics, Springer, vol. 9(2), pages 197-209, April.
    11. Tommi Sottinen, 2001. "Fractional Brownian motion, random walks and binary market models," Finance and Stochastics, Springer, vol. 5(3), pages 343-355.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Paolo Guasoni & Mikl'os R'asonyi & Walter Schachermayer, 2008. "Consistent price systems and face-lifting pricing under transaction costs," Papers 0803.4416, arXiv.org.
    14. Christian Bender & Tommi Sottinen & Esko Valkeila, 2010. "Fractional processes as models in stochastic finance," Papers 1004.3106, arXiv.org.
    15. Bai, Shuyang & Taqqu, Murad S., 2014. "Generalized Hermite processes, discrete chaos and limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 124(4), pages 1710-1739.
    16. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1612.07016. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.