IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i10p3435-3452.html
   My bibliography  Save this article

A strong uniform approximation of fractional Brownian motion by means of transport processes

Author

Listed:
  • Garzón, J.
  • Gorostiza, L.G.
  • León, J.A.

Abstract

We construct a sequence of processes that converges strongly to fractional Brownian motion uniformly on bounded intervals for any Hurst parameter H, and we derive a rate of convergence, which becomes better when H approaches 1/2. The construction is based on the Mandelbrot-van Ness stochastic integral representation of fractional Brownian motion and on a strong transport process approximation of Brownian motion. The objective of this method is to facilitate simulation.

Suggested Citation

  • Garzón, J. & Gorostiza, L.G. & León, J.A., 2009. "A strong uniform approximation of fractional Brownian motion by means of transport processes," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3435-3452, October.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:10:p:3435-3452
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00109-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szabados, Tamás, 2001. "Strong approximation of fractional Brownian motion by moving averages of simple random walks," Stochastic Processes and their Applications, Elsevier, vol. 92(1), pages 31-60, March.
    2. Enriquez, Nathanaël, 2004. "A simple construction of the fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 203-223, February.
    3. Tommi Sottinen, 2001. "Fractional Brownian motion, random walks and binary market models," Finance and Stochastics, Springer, vol. 5(3), pages 343-355.
    4. Klüppelberg, Claudia & Kühn, Christoph, 2004. "Fractional Brownian motion as a weak limit of Poisson shot noise processes--with applications to finance," Stochastic Processes and their Applications, Elsevier, vol. 113(2), pages 333-351, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Giang T. & Peralta, Oscar, 2020. "An explicit solution to the Skorokhod embedding problem for double exponential increments," Statistics & Probability Letters, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis G. Gorostiza & Reyla A. Navarro & Eliane R. Rodrigues, 2004. "Some Long-Range Dependence Processes Arising from Fluctuations of Particle Systems," RePAd Working Paper Series lrsp-TRS401, Département des sciences administratives, UQO.
    2. Christian Bender & Tommi Sottinen & Esko Valkeila, 2010. "Fractional processes as models in stochastic finance," Papers 1004.3106, arXiv.org.
    3. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    4. Inoue, Akihiko & Nakano, Yumiharu & Anh, Vo, 2007. "Binary market models with memory," Statistics & Probability Letters, Elsevier, vol. 77(3), pages 256-264, February.
    5. Rostek, Stefan & Schöbel, Rainer, 2006. "Risk preference based option pricing in a fractional Brownian market," Tübinger Diskussionsbeiträge 299, University of Tübingen, School of Business and Economics.
    6. Chr. Framstad, Nils, 2011. "On free lunches in random walk markets with short-sale constraints and small transaction costs, and weak convergence to Gaussian continuous-time processes," Memorandum 20/2011, Oslo University, Department of Economics.
    7. Cordero, Fernando & Klein, Irene & Perez-Ostafe, Lavinia, 2016. "Asymptotic proportion of arbitrage points in fractional binary markets," Stochastic Processes and their Applications, Elsevier, vol. 126(2), pages 315-336.
    8. Araya, Héctor & Bahamonde, Natalia & Torres, Soledad & Viens, Frederi, 2019. "Donsker type theorem for fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 1-8.
    9. Dorsaf Cherif & Emmanuel Lépinette, 2021. "No-arbitrage conditions and pricing from discrete-time to continuous-time strategies," Working Papers hal-03284660, HAL.
    10. Héctor Araya & Meryem Slaoui & Soledad Torres, 2022. "Bayesian inference for fractional Oscillating Brownian motion," Computational Statistics, Springer, vol. 37(2), pages 887-907, April.
    11. Zhang, Pu & Xiao, Wei-lin & Zhang, Xi-li & Niu, Pan-qiang, 2014. "Parameter identification for fractional Ornstein–Uhlenbeck processes based on discrete observation," Economic Modelling, Elsevier, vol. 36(C), pages 198-203.
    12. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Sojmark, 2017. "Functional central limit theorems for rough volatility," Papers 1711.03078, arXiv.org, revised Nov 2023.
    13. Hideharu Funahashi & Masaaki Kijima, 2017. "Does the Hurst index matter for option prices under fractional volatility?," Annals of Finance, Springer, vol. 13(1), pages 55-74, February.
    14. Rostek, S. & Schöbel, R., 2013. "A note on the use of fractional Brownian motion for financial modeling," Economic Modelling, Elsevier, vol. 30(C), pages 30-35.
    15. Fernando Cordero & Lavinia Perez-Ostafe, 2014. "Critical transaction costs and 1-step asymptotic arbitrage in fractional binary markets," Papers 1407.8068, arXiv.org.
    16. Mine Caglar, 2011. "Stock Price Processes with Infinite Source Poisson Agents," Papers 1106.6300, arXiv.org.
    17. Bardina, X. & Nourdin, I. & Rovira, C. & Tindel, S., 2010. "Weak approximation of a fractional SDE," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 39-65, January.
    18. Zhang, Pu & Sun, Qi & Xiao, Wei-Lin, 2014. "Parameter identification in mixed Brownian–fractional Brownian motions using Powell's optimization algorithm," Economic Modelling, Elsevier, vol. 40(C), pages 314-319.
    19. Holger Fink & Christian Scherr, 2014. "CDS pricing with long memory via fractional Lévy processes," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-35.
    20. Fernando Cordero & Lavinia Perez-Ostafe, 2015. "Critical Transaction Costs And 1-Step Asymptotic Arbitrage In Fractional Binary Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:10:p:3435-3452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.