IDEAS home Printed from https://ideas.repec.org/r/oec/stdkaa/5km7v183qs0v.html
   My bibliography  Save this item

Out-of-sample Performance of Leading Indicators for the German Business Cycle: Single vs. Combined Forecasts

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Österholm, Pär, 2013. "Forecasting Business Investment in the Short Term Using Survey Data," Working Papers 131, National Institute of Economic Research.
  2. Anna Sophia Ciesielski & Klaus Wohlrabe, 2011. "Sektorale Prognosen im Verarbeitenden Gewerbe," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, pages 27-35.
  3. Kholodilin Konstantin Arkadievich & Siliverstovs Boriss, 2006. "On the Forecasting Properties of the Alternative Leading Indicators for the German GDP: Recent Evidence," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, pages 234-259.
  4. Klaus Abberger & Gebhard Flaig & Wolfgang Nierhaus, 2007. "ifo Konjunkturumfragen und Konjunkturanalyse : ausgewählte methodische Aufsätze aus dem ifo Schnelldienst," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 33.
  5. Drechsel, Katja & Scheufele, Rolf, 2012. "The performance of short-term forecasts of the German economy before and during the 2008/2009 recession," International Journal of Forecasting, Elsevier, pages 428-445.
  6. Gerit Vogt, 2009. "Konjunkturprognose in Deutschland. Ein Beitrag zur Prognose der gesamtwirtschaftlichen Entwicklung auf Bundes- und Länderebene," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 36.
  7. Katarina Bacic & Maruska Vizek, 2006. "A Brand New CROLEI: Do We Need a New Forecasting Index?," Financial Theory and Practice, Institute of Public Finance, vol. 30(4), pages 311-346.
  8. Kholodilin Konstantin A., 2005. "Forecasting the German Cyclical Turning Points: Dynamic Bi-Factor Model with Markov Switching," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, pages 653-674.
  9. Maria Antoinette Silgoner, 2005. "An Overview of European Economic Indicators: Great Variety of Data on the Euro Area, Need for More Extensive Coverage of the New EU Member States," Monetary Policy & the Economy, Oesterreichische Nationalbank (Austrian Central Bank), pages 66-89.
  10. Konstantin A. Kholodilin & Boriss Siliverstovs, 2005. "On the Forecasting Properties of the Alternative Leading Indicators for the German GDP: Recent Evidence," Discussion Papers of DIW Berlin 522, DIW Berlin, German Institute for Economic Research.
  11. Raoufina, Karine, 2016. "Forecasting Employment Growth in Sweden Using a Bayesian VAR Model," Working Papers 144, National Institute of Economic Research.
  12. Sascha Becker & Klaus Wohlrabe, 2007. "Micro Data at the Ifo Institute for Economic Research - The "Ifo Business Survey", Usage and Access," ifo Working Paper Series 47, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  13. Drechsel, Katja & Scheufele, Rolf, 2010. "Should We Trust in Leading Indicators? Evidence from the Recent Recession," IWH Discussion Papers 10/2010, Halle Institute for Economic Research (IWH).
  14. repec:jns:jbstat:v:227:y:2007:i:1:p:87-101 is not listed on IDEAS
  15. Anna Wolf, 2007. "Der Index für Konjunkturerwartungen des ZEW und des ifo Instituts, WES, sind für Deutschland identisch," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, pages 55-56.
  16. Nikolay Robinzonov & Klaus Wohlrabe, 2010. "Freedom of Choice in Macroeconomic Forecasting ," CESifo Economic Studies, CESifo, pages 192-220.
  17. Heinisch, Katja, 2016. "A real-time analysis on the importance of hard and soft data for nowcasting German GDP," Annual Conference 2016 (Augsburg): Demographic Change 145864, Verein für Socialpolitik / German Economic Association.
  18. Nikolay Robinzonov & Klaus Wohlrabe, 2008. "Freedom of Choice in Macroeconomic Forecasting: An Illustration with German Industrial Production and Linear Models," ifo Working Paper Series 57, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  19. Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
  20. Christian Dreger & Konstantin Arkadievich Kholodilin, 2013. "Forecasting Private Consumption by Consumer Surveys," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 10-18, January.
  21. Klaus Abberger & Klaus Wohlrabe, 2006. "Einige Prognoseeigenschaften des ifo Geschäftsklimas - Ein Überblick über die neuere wissenschaftliche Literatur," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, pages 19-26.
  22. Klaus Abberger & Sascha Becker & Barbara Hofmann & Klaus Wohlrabe, 2007. "Mikrodaten im ifo Institut für Wirtschaftsforschung: Bestand, Verwendung, Zugang," ifo Working Paper Series 44, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  23. Heinisch, Katja & Scheufele, Rolf, 2017. "Should forecasters use real-time data to evaluate leading indicator models for GDP prediction? German evidence," IWH Discussion Papers 5/2017, Halle Institute for Economic Research (IWH).
  24. Klaus Abberger & Sascha Becker & Barbara Hofmann & Klaus Wohlrabe, 2007. "Mikrodaten im ifo Institut für Wirtschaftsforschung – Bestand, Verwendung und Zugang," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 1(1), pages 27-42, June.
  25. Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, pages 99-122.
  26. Sascha O. Becker & Klaus Wohlrabe, 2008. "European Data Watch: Micro Data at the Ifo Institute for Economic Research – The “Ifo Business Survey”, Usage and Access," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 128(2), pages 307-319.
  27. Vogt Gerit, 2007. "Analyse der Prognoseeigenschaften von ifo-Konjunkturindikatoren unter Echtzeitbedingungen / The Forecasting Performance of ifo-indicators Under Real-time Conditions," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, pages 87-101.
IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.