IDEAS home Printed from https://ideas.repec.org/r/nat/natene/v1y2016i7d10.1038_nenergy.2016.79.html
   My bibliography  Save this item

Limiting the public cost of stationary battery deployment by combining applications

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Rodrigo Martins & Holger C. Hesse & Johanna Jungbauer & Thomas Vorbuchner & Petr Musilek, 2018. "Optimal Component Sizing for Peak Shaving in Battery Energy Storage System for Industrial Applications," Energies, MDPI, vol. 11(8), pages 1-22, August.
  2. Rangarajan, Arvind & Foley, Sean & Trück, Stefan, 2023. "Assessing the impact of battery storage on Australian electricity markets," Energy Economics, Elsevier, vol. 120(C).
  3. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
  4. Hassan S Hayajneh & Maximiliano Lainfiesta Herrera & Xuewei Zhang, 2021. "Design of combined stationary and mobile battery energy storage systems," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-21, December.
  5. Jürgen Marchgraber & Wolfgang Gawlik, 2021. "Dynamic Prioritization of Functions during Real-Time Multi-Use Operation of Battery Energy Storage Systems," Energies, MDPI, vol. 14(3), pages 1-36, January.
  6. Alejandro Pena-Bello & Edward Barbour & Marta C. Gonzalez & Selin Yilmaz & Martin K. Patel & David Parra, 2020. "How Does the Electricity Demand Profile Impact the Attractiveness of PV-Coupled Battery Systems Combining Applications?," Energies, MDPI, vol. 13(15), pages 1-19, August.
  7. Bernhard Faessler & Aleksander Bogunović Jakobsen, 2021. "Autonomous Operation of Stationary Battery Energy Storage Systems—Optimal Storage Design and Economic Potential," Energies, MDPI, vol. 14(5), pages 1-12, March.
  8. Parra, David & Mauger, Romain, 2022. "A new dawn for energy storage: An interdisciplinary legal and techno-economic analysis of the new EU legal framework," Energy Policy, Elsevier, vol. 171(C).
  9. He, Guannan & Ciez, Rebecca & Moutis, Panayiotis & Kar, Soummya & Whitacre, Jay F., 2020. "The economic end of life of electrochemical energy storage," Applied Energy, Elsevier, vol. 273(C).
  10. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).
  11. Abdon, Andreas & Zhang, Xiaojin & Parra, David & Patel, Martin K. & Bauer, Christian & Worlitschek, Jörg, 2017. "Techno-economic and environmental assessment of stationary electricity storage technologies for different time scales," Energy, Elsevier, vol. 139(C), pages 1173-1187.
  12. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  13. Daniel Fett & Dogan Keles & Thomas Kaschub & Wolf Fichtner, 2019. "Impacts of self-generation and self-consumption on German household electricity prices," Journal of Business Economics, Springer, vol. 89(7), pages 867-891, September.
  14. Say, Kelvin & Schill, Wolf-Peter & John, Michele, 2020. "Degrees of displacement: The impact of household PV battery prosumage on utility generation and storage," Applied Energy, Elsevier, vol. 276(C).
  15. Shan, Rui & Abdulla, Ahmed & Li, Mingquan, 2021. "Deleterious effects of strategic, profit-seeking energy storage operation on electric power system costs," Applied Energy, Elsevier, vol. 292(C).
  16. Mirzania, Pegah & Balta-Ozkan, Nazmiye & Ford, Andy, 2020. "An innovative viable model for community-owned solar PV projects without FIT: Comprehensive techno-economic assessment," Energy Policy, Elsevier, vol. 146(C).
  17. Stephan, Annegret & Schmidt, Tobias S. & Bening, Catharina R. & Hoffmann, Volker H., 2017. "The sectoral configuration of technological innovation systems: Patterns of knowledge development and diffusion in the lithium-ion battery technology in Japan," Research Policy, Elsevier, vol. 46(4), pages 709-723.
  18. Litjens, G.B.M.A. & Worrell, E. & van Sark, W.G.J.H.M., 2018. "Economic benefits of combining self-consumption enhancement with frequency restoration reserves provision by photovoltaic-battery systems," Applied Energy, Elsevier, vol. 223(C), pages 172-187.
  19. Stephan, Annegret & Bening, Catharina R. & Schmidt, Tobias S. & Schwarz, Marius & Hoffmann, Volker H., 2019. "The role of inter-sectoral knowledge spillovers in technological innovations: The case of lithium-ion batteries," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
  20. Holger C. Hesse & Volkan Kumtepeli & Michael Schimpe & Jorn Reniers & David A. Howey & Anshuman Tripathi & Youyi Wang & Andreas Jossen, 2019. "Ageing and Efficiency Aware Battery Dispatch for Arbitrage Markets Using Mixed Integer Linear Programming †," Energies, MDPI, vol. 12(6), pages 1-28, March.
  21. Mulleriyawage, U.G.K. & Shen, W.X., 2020. "Optimally sizing of battery energy storage capacity by operational optimization of residential PV-Battery systems: An Australian household case study," Renewable Energy, Elsevier, vol. 160(C), pages 852-864.
  22. Pena-Bello, A. & Barbour, E. & Gonzalez, M.C. & Patel, M.K. & Parra, D., 2019. "Optimized PV-coupled battery systems for combining applications: Impact of battery technology and geography," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 978-990.
  23. Bernhard Faessler, 2021. "Stationary, Second Use Battery Energy Storage Systems and Their Applications: A Research Review," Energies, MDPI, vol. 14(8), pages 1-19, April.
  24. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies," Applied Energy, Elsevier, vol. 239(C), pages 356-372.
  25. Angenendt, Georg & Merten, Michael & Zurmühlen, Sebastian & Sauer, Dirk Uwe, 2020. "Evaluation of the effects of frequency restoration reserves market participation with photovoltaic battery energy storage systems and power-to-heat coupling," Applied Energy, Elsevier, vol. 260(C).
  26. Ollas, Patrik & Sigarchian, Sara Ghaem & Alfredsson, Hampus & Leijon, Jennifer & Döhler, Jessica Santos & Aalhuizen, Christoffer & Thiringer, Torbjörn & Thomas, Karin, 2023. "Evaluating the role of solar photovoltaic and battery storage in supporting electric aviation and vehicle infrastructure at Visby Airport," Applied Energy, Elsevier, vol. 352(C).
  27. Ulrich J. Frey & Sandra Wassermann & Marc Deissenroth-Uhrig, 2020. "Storage Technologies for the Electricity Transition: An Analysis of Actors, Actor Perspectives and Transition Pathways in Germany," Energies, MDPI, vol. 14(1), pages 1-19, December.
  28. Litjens, G.B.M.A. & Worrell, E. & van Sark, W.G.J.H.M., 2018. "Assessment of forecasting methods on performance of photovoltaic-battery systems," Applied Energy, Elsevier, vol. 221(C), pages 358-373.
  29. Gschwendtner, Christine & Sinsel, Simon R. & Stephan, Annegret, 2021. "Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  30. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
  31. Schwarz, Marius & Auzépy, Quentin & Knoeri, Christof, 2020. "Can electricity pricing leverage electric vehicles and battery storage to integrate high shares of solar photovoltaics?," Applied Energy, Elsevier, vol. 277(C).
  32. Hong Eun Moon & Yoon Hee Ha & Kyung Nam Kim, 2022. "Comparative Economic Analysis of Solar PV and Reused EV Batteries in the Residential Sector of Three Emerging Countries—The Philippines, Indonesia, and Vietnam," Energies, MDPI, vol. 16(1), pages 1-26, December.
  33. Englberger, Stefan & Abo Gamra, Kareem & Tepe, Benedikt & Schreiber, Michael & Jossen, Andreas & Hesse, Holger, 2021. "Electric vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid context," Applied Energy, Elsevier, vol. 304(C).
  34. Thimet, P.J. & Mavromatidis, G., 2022. "Review of model-based electricity system transition scenarios: An analysis for Switzerland, Germany, France, and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  35. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
  36. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  37. Codina, Eloi & Domenech, Bruno & Juanpera, Marc & Palomo-Avellaneda, Leopold & Pastor, Rafael, 2023. "Is switching to solar energy a feasible investment? A techno-economic analysis of domestic consumers in Spain," Energy Policy, Elsevier, vol. 183(C).
  38. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
  39. Draheim, Patrick & Schlachter, Uli & Wigger, Henning & Worschech, Alena & Brand, Urte & Diekmann, Theys & Schuldt, Frank & Hanke, Benedikt & von Maydell, Karsten & Vogt, Thomas, 2020. "Business case analysis of hybrid systems consisting of battery storage and power-to-heat on the German energy market," Utilities Policy, Elsevier, vol. 67(C).
  40. Wen, Kerui & Li, Weidong & Yu, Samson Shenglong & Li, Ping & Shi, Peng, 2022. "Optimal intra-day operations of behind-the-meter battery storage for primary frequency regulation provision: A hybrid lookahead method," Energy, Elsevier, vol. 247(C).
  41. Zakeri, Behnam & Gissey, Giorgio Castagneto & Dodds, Paul E. & Subkhankulova, Dina, 2021. "Centralized vs. distributed energy storage – Benefits for residential users," Energy, Elsevier, vol. 236(C).
  42. Gupta, Ruchi & Pena-Bello, Alejandro & Streicher, Kai Nino & Roduner, Cattia & Farhat, Yamshid & Thöni, David & Patel, Martin Kumar & Parra, David, 2021. "Spatial analysis of distribution grid capacity and costs to enable massive deployment of PV, electric mobility and electric heating," Applied Energy, Elsevier, vol. 287(C).
  43. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
  44. Zakeri, Behnam & Cross, Samuel & Dodds, Paul.E. & Gissey, Giorgio Castagneto, 2021. "Policy options for enhancing economic profitability of residential solar photovoltaic with battery energy storage," Applied Energy, Elsevier, vol. 290(C).
  45. Kalkbrenner, Bernhard J., 2019. "Residential vs. community battery storage systems – Consumer preferences in Germany," Energy Policy, Elsevier, vol. 129(C), pages 1355-1363.
  46. Kubli, Merla & Canzi, Patrizio, 2021. "Business strategies for flexibility aggregators to steer clear of being “too small to bid”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  47. Fabian Scheller & Robert Burkhardt & Robert Schwarzeit & Russell McKenna & Thomas Bruckner, 2020. "Competition between simultaneous demand-side flexibility options: The case of community electricity storage systems," Papers 2011.05809, arXiv.org.
  48. Soini, Martin Christoph & Parra, David & Patel, Martin Kumar, 2020. "Does bulk electricity storage assist wind and solar in replacing dispatchable power production?," Energy Economics, Elsevier, vol. 85(C).
  49. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.