IDEAS home Printed from https://ideas.repec.org/r/inm/ormnsc/v15y1968i1p102-109.html
   My bibliography  Save this item

An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Guner, Ertan & Erol, Serpil & Tani, Kazuo, 1998. "One machine scheduling to minimize the maximum earliness with minimum number of tardy jobs," International Journal of Production Economics, Elsevier, vol. 55(2), pages 213-219, July.
  2. Peridy, Laurent & Pinson, Eric & Rivreau, David, 2003. "Using short-term memory to minimize the weighted number of late jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 148(3), pages 591-603, August.
  3. Ben-Daya, M. & Duffuaa, S. O. & Raouf, A., 1996. "Minimizing mean tardiness subject to unspecified minimum number tardy for a single machine," European Journal of Operational Research, Elsevier, vol. 89(1), pages 100-107, February.
  4. Crauwels, H. A. J. & Potts, C. N. & Van Wassenhove, L. N., 1996. "Local search heuristics for single-machine scheduling with batching to minimize the number of late jobs," European Journal of Operational Research, Elsevier, vol. 90(2), pages 200-213, April.
  5. Schmidt, Gunter, 2000. "Performance guarantee of two simple priority rules for production scheduling," International Journal of Production Economics, Elsevier, vol. 68(2), pages 151-159, November.
  6. Xiang, S. & Tang, G. & Cheng, T. C. E., 2000. "Solvable cases of permutation flowshop scheduling with dominating machines," International Journal of Production Economics, Elsevier, vol. 66(1), pages 53-57, June.
  7. Murat Güngör, 2016. "A note on efficient sequences with respect to total flow time and number of tardy jobs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 346-348, June.
  8. Koksalan, Murat & Burak Keha, Ahmet, 2003. "Using genetic algorithms for single-machine bicriteria scheduling problems," European Journal of Operational Research, Elsevier, vol. 145(3), pages 543-556, March.
  9. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
  10. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
  11. Janiak, Adam & Krysiak, Tomasz, 2012. "Scheduling jobs with values dependent on their completion times," International Journal of Production Economics, Elsevier, vol. 135(1), pages 231-241.
  12. Hejl, Lukáš & Šůcha, Přemysl & Novák, Antonín & Hanzálek, Zdeněk, 2022. "Minimizing the weighted number of tardy jobs on a single machine: Strongly correlated instances," European Journal of Operational Research, Elsevier, vol. 298(2), pages 413-424.
  13. Shabtay, Dvir & Gilenson, Miri, 2023. "A state-of-the-art survey on multi-scenario scheduling," European Journal of Operational Research, Elsevier, vol. 310(1), pages 3-23.
  14. Gupta, Jatinder N. D. & Ho, Johnny C., 1996. "Scheduling with two job classes and setup times to minimize the number of tardy jobs," International Journal of Production Economics, Elsevier, vol. 42(3), pages 205-216, April.
  15. Julia Chuzhoy & Rafail Ostrovsky & Yuval Rabani, 2006. "Approximation Algorithms for the Job Interval Selection Problem and Related Scheduling Problems," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 730-738, November.
  16. Janiak, Adam & Janiak, Władysław A. & Krysiak, Tomasz & Kwiatkowski, Tomasz, 2015. "A survey on scheduling problems with due windows," European Journal of Operational Research, Elsevier, vol. 242(2), pages 347-357.
  17. Ho, Johnny C. & Chang, Yih-Long, 1995. "Minimizing the number of tardy jobs for m parallel machines," European Journal of Operational Research, Elsevier, vol. 84(2), pages 343-355, July.
  18. Sachchida Nand Chaurasia & Shyam Sundar & Alok Singh, 2017. "Hybrid metaheuristic approaches for the single machine total stepwise tardiness problem with release dates," Operational Research, Springer, vol. 17(1), pages 275-295, April.
  19. Gerodimos, Alex E. & Glass, Celia A. & Potts, Chris N., 2000. "Scheduling the production of two-component jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 120(2), pages 250-259, January.
  20. Hui-Chih Hung & Bertrand M. T. Lin & Marc E. Posner & Jun-Min Wei, 2019. "Preemptive parallel-machine scheduling problem of maximizing the number of on-time jobs," Journal of Scheduling, Springer, vol. 22(4), pages 413-431, August.
  21. Lushchakova, Irene N., 2000. "Minimizing functions of infeasibilities in a two-machine flow shop," European Journal of Operational Research, Elsevier, vol. 121(2), pages 380-393, March.
  22. Tzafestas, Spyros & Triantafyllakis, Alekos, 1993. "Deterministic scheduling in computing and manufacturing systems: a survey of models and algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 35(5), pages 397-434.
  23. Danny Hermelin & Shlomo Karhi & Michael Pinedo & Dvir Shabtay, 2021. "New algorithms for minimizing the weighted number of tardy jobs on a single machine," Annals of Operations Research, Springer, vol. 298(1), pages 271-287, March.
  24. Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2013. "Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries for multiple customers in supply chains," European Journal of Operational Research, Elsevier, vol. 228(2), pages 345-357.
  25. Schmidt, Gunter, 2000. "Scheduling with limited machine availability," European Journal of Operational Research, Elsevier, vol. 121(1), pages 1-15, February.
  26. M'Hallah, Rym & Bulfin, R. L., 2003. "Minimizing the weighted number of tardy jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 145(1), pages 45-56, February.
  27. Wan, Long & Yuan, Jinjiang & Wei, Lijun, 2016. "Pareto optimization scheduling with two competing agents to minimize the number of tardy jobs and the maximum cost," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 912-923.
  28. T’kindt, Vincent & Della Croce, Federico & Agnetis, Alessandro, 2024. "Single machine adversarial bilevel scheduling problems," European Journal of Operational Research, Elsevier, vol. 315(1), pages 63-72.
  29. Koulamas, Christos, 1998. "On the complexity of two-machine flowshop problems with due date related objectives," European Journal of Operational Research, Elsevier, vol. 106(1), pages 95-100, April.
  30. Sevaux, Marc & Dauzere-Peres, Stephane, 2003. "Genetic algorithms to minimize the weighted number of late jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 151(2), pages 296-306, December.
  31. Chen, Ke & Cheng, T.C.E. & Huang, Hailiang & Ji, Min & Yao, Danli, 2023. "Single-machine scheduling with autonomous and induced learning to minimize total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 309(1), pages 24-34.
  32. Ruiz-Torres, Alex J. & Ho, Johnny C. & Lopez, Francisco J., 2006. "Generating Pareto schedules with outsource and internal parallel resources," International Journal of Production Economics, Elsevier, vol. 103(2), pages 810-825, October.
  33. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.
  34. Timkovsky, Vadim G., 2003. "Identical parallel machines vs. unit-time shops and preemptions vs. chains in scheduling complexity," European Journal of Operational Research, Elsevier, vol. 149(2), pages 355-376, September.
  35. Marjan Akker & Han Hoogeveen & Judith Stoef, 2018. "Combining two-stage stochastic programming and recoverable robustness to minimize the number of late jobs in the case of uncertain processing times," Journal of Scheduling, Springer, vol. 21(6), pages 607-617, December.
  36. Koulamas, Christos & Kyparisis, George J., 2010. "Single-machine scheduling problems with past-sequence-dependent delivery times," International Journal of Production Economics, Elsevier, vol. 126(2), pages 264-266, August.
  37. Yuli Ye & Allan Borodin, 2008. "Priority algorithms for the subset-sum problem," Journal of Combinatorial Optimization, Springer, vol. 16(3), pages 198-228, October.
  38. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
  39. Nicholas G. Hall & Marc E. Posner & Chris N. Potts, 2021. "Online production planning to maximize the number of on-time orders," Annals of Operations Research, Springer, vol. 298(1), pages 249-269, March.
  40. Hermelin, Danny & Kubitza, Judith-Madeleine & Shabtay, Dvir & Talmon, Nimrod & Woeginger, Gerhard J., 2019. "Scheduling two agents on a single machine: A parameterized analysis of NP-hard problems," Omega, Elsevier, vol. 83(C), pages 275-286.
  41. Nagar, Amit & Haddock, Jorge & Heragu, Sunderesh, 1995. "Multiple and bicriteria scheduling: A literature survey," European Journal of Operational Research, Elsevier, vol. 81(1), pages 88-104, February.
  42. Lin, B. M. T. & Cheng, T. C. E., 1999. "Minimizing the weighted number of tardy jobs and maximum tardiness in relocation problem with due date constraints," European Journal of Operational Research, Elsevier, vol. 116(1), pages 183-193, July.
  43. Leung, Joseph Y.-T. & Li, Haibing & Pinedo, Michael, 2006. "Scheduling orders for multiple product types with due date related objectives," European Journal of Operational Research, Elsevier, vol. 168(2), pages 370-389, January.
  44. Dauzere-Peres, Stephane, 1995. "Minimizing late jobs in the general one machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 81(1), pages 134-142, February.
  45. Nadia Brauner & Gerd Finke & Yakov Shafransky, 2017. "Lawler’s minmax cost problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 31-46, July.
  46. M'Hallah, Rym & Bulfin, R.L., 2007. "Minimizing the weighted number of tardy jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 176(2), pages 727-744, January.
  47. Ruiz-Torres, Alex J. & Lopez, Francisco J. & Ho, Johnny C., 2007. "Scheduling uniform parallel machines subject to a secondary resource to minimize the number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 179(2), pages 302-315, June.
  48. Baptiste, Philippe & Peridy, Laurent & Pinson, Eric, 2003. "A branch and bound to minimize the number of late jobs on a single machine with release time constraints," European Journal of Operational Research, Elsevier, vol. 144(1), pages 1-11, January.
  49. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
  50. Klaus Heeger & Danny Hermelin & George B. Mertzios & Hendrik Molter & Rolf Niedermeier & Dvir Shabtay, 2023. "Equitable scheduling on a single machine," Journal of Scheduling, Springer, vol. 26(2), pages 209-225, April.
  51. Detienne, Boris, 2014. "A mixed integer linear programming approach to minimize the number of late jobs with and without machine availability constraints," European Journal of Operational Research, Elsevier, vol. 235(3), pages 540-552.
  52. Jolai, Fariborz, 2005. "Minimizing number of tardy jobs on a batch processing machine with incompatible job families," European Journal of Operational Research, Elsevier, vol. 162(1), pages 184-190, April.
  53. Koulamas, Christos & Kyparisis, George J., 2001. "Single machine scheduling with release times, deadlines and tardiness objectives," European Journal of Operational Research, Elsevier, vol. 133(2), pages 447-453, January.
  54. Janiak, Adam & Kovalyov, Mikhail Y., 1996. "Single machine scheduling subject to deadlines and resource dependent processing times," European Journal of Operational Research, Elsevier, vol. 94(2), pages 284-291, October.
  55. Jinjiang Yuan, 2017. "Unary NP-hardness of minimizing the number of tardy jobs with deadlines," Journal of Scheduling, Springer, vol. 20(2), pages 211-218, April.
  56. Lee, Wen-Chiung & Wu, Chin-Chia, 2004. "Minimizing total completion time in a two-machine flowshop with a learning effect," International Journal of Production Economics, Elsevier, vol. 88(1), pages 85-93, March.
  57. Talla Nobibon, Fabrice & Leus, Roel & Nip, Kameng & Wang, Zhenbo, 2015. "Resource loading with time windows," European Journal of Operational Research, Elsevier, vol. 244(2), pages 404-416.
  58. Wang, J.-B. & Ng, C.T. & Cheng, T.C.E. & Liu, L.L., 2008. "Single-machine scheduling with a time-dependent learning effect," International Journal of Production Economics, Elsevier, vol. 111(2), pages 802-811, February.
  59. Jasper Jong & Marc Uetz, 2020. "The quality of equilibria for set packing and throughput scheduling games," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(1), pages 321-344, March.
  60. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
  61. Biskup, Dirk & Herrmann, Jan, 2008. "Single-machine scheduling against due dates with past-sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 191(2), pages 587-592, December.
  62. Briskorn, Dirk & Waldherr, Stefan, 2022. "Anarchy in the UJ: Coordination mechanisms for minimizing the number of late jobs," European Journal of Operational Research, Elsevier, vol. 301(3), pages 815-827.
  63. Yuan, Jinjiang & Lin, Yixun, 2005. "Single machine preemptive scheduling with fixed jobs to minimize tardiness related criteria," European Journal of Operational Research, Elsevier, vol. 164(3), pages 851-855, August.
  64. Sadykov, Ruslan, 2008. "A branch-and-check algorithm for minimizing the weighted number of late jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1284-1304, September.
  65. Bornstein, Claudio Thomas & Alcoforado, Luciane Ferreira & Maculan, Nelson, 2005. "A graph-oriented approach for the minimization of the number of late jobs for the parallel machines scheduling problem," European Journal of Operational Research, Elsevier, vol. 165(3), pages 649-656, September.
  66. M'Hallah, Rym & Bulfin, R. L., 2005. "Minimizing the weighted number of tardy jobs on parallel processors," European Journal of Operational Research, Elsevier, vol. 160(2), pages 471-484, January.
  67. Koulamas, Christos & Kyparisis, George J., 2019. "New results for single-machine scheduling with past-sequence-dependent setup times and due date-related objectives," European Journal of Operational Research, Elsevier, vol. 278(1), pages 149-159.
  68. Mosheiov, Gur, 2001. "Scheduling problems with a learning effect," European Journal of Operational Research, Elsevier, vol. 132(3), pages 687-693, August.
  69. Koksalan Kondakci, Suna & Bekiroglu, Tuncay, 1997. "Scheduling with bicriteria: total flowtime and number of tardy jobs," International Journal of Production Economics, Elsevier, vol. 53(1), pages 91-99, November.
  70. Waldherr, Stefan & Knust, Sigrid, 2015. "Complexity results for flow shop problems with synchronous movement," European Journal of Operational Research, Elsevier, vol. 242(1), pages 34-44.
  71. Yedidsion, Liron & Shabtay, Dvir & Korach, Ephraim & Kaspi, Moshe, 2009. "A bicriteria approach to minimize number of tardy jobs and resource consumption in scheduling a single machine," International Journal of Production Economics, Elsevier, vol. 119(2), pages 298-307, June.
  72. Huo, Yumei & Leung, Joseph Y.-T. & Zhao, Hairong, 2007. "Bi-criteria scheduling problems: Number of tardy jobs and maximum weighted tardiness," European Journal of Operational Research, Elsevier, vol. 177(1), pages 116-134, February.
  73. Erenay, Fatih Safa & Sabuncuoglu, Ihsan & Toptal, Aysegül & Tiwari, Manoj Kumar, 2010. "New solution methods for single machine bicriteria scheduling problem: Minimization of average flowtime and number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 201(1), pages 89-98, February.
  74. Ruyan He & Jinjiang Yuan & C. T. Ng & T. C. E. Cheng, 2021. "Two-agent preemptive Pareto-scheduling to minimize the number of tardy jobs and total late work," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 504-525, February.
  75. Della Croce, Federico & Gupta, Jatinder N. D. & Tadei, Roberto, 2000. "Minimizing tardy jobs in a flowshop with common due date," European Journal of Operational Research, Elsevier, vol. 120(2), pages 375-381, January.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.