IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v298y2022i2p413-424.html
   My bibliography  Save this article

Minimizing the weighted number of tardy jobs on a single machine: Strongly correlated instances

Author

Listed:
  • Hejl, Lukáš
  • Šůcha, Přemysl
  • Novák, Antonín
  • Hanzálek, Zdeněk

Abstract

This paper addresses a single machine scheduling problem minimizing the weighted number of tardy jobs, where each job is characterized by processing time, due date, deadline, and weight. It is known from the existing literature that so-called strongly correlated instances, i.e., instances where each job has the weight equal to its processing time plus a constant, are significantly harder to solve compared to instances without this relation. In this work, we extend an exact algorithm proposed in Baptiste et al. (2010) with the aim of solving the strongly correlated instances significantly faster. The main improvement is the new integer linear programming model for strongly correlated instances utilizing a decomposition according to the number of tardy jobs. Other proposed improvements are tighter lower and upper bounds which can be applied to all types of instances. The best-known algorithm proposed in Baptiste et al. (2010) cannot solve all instances with 250 jobs to the optimum within an hour. On the same hardware, our relatively simple improvements implemented into the algorithm proposed by Baptiste et al. enable solving all examined strongly correlated instances to the optimum within an hour for up to 5,000 jobs and reduce the computational time on other instances as well.

Suggested Citation

  • Hejl, Lukáš & Šůcha, Přemysl & Novák, Antonín & Hanzálek, Zdeněk, 2022. "Minimizing the weighted number of tardy jobs on a single machine: Strongly correlated instances," European Journal of Operational Research, Elsevier, vol. 298(2), pages 413-424.
  • Handle: RePEc:eee:ejores:v:298:y:2022:i:2:p:413-424
    DOI: 10.1016/j.ejor.2021.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172100597X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ming Liu & Shijin Wang & Chengbin Chu & Feng Chu, 2016. "An improved exact algorithm for single-machine scheduling to minimise the number of tardy jobs with periodic maintenance," International Journal of Production Research, Taylor & Francis Journals, vol. 54(12), pages 3591-3602, June.
    2. E. L. Lawler & J. M. Moore, 1969. "A Functional Equation and its Application to Resource Allocation and Sequencing Problems," Management Science, INFORMS, vol. 16(1), pages 77-84, September.
    3. A. M. A. Hariri & C. N. Potts, 1994. "Single Machine Scheduling with Deadlines to Minimize the Weighted Number of Tardy Jobs," Management Science, INFORMS, vol. 40(12), pages 1712-1719, December.
    4. C. N. Potts & L. N. Van Wassenhove, 1988. "Algorithms for Scheduling a Single Machine to Minimize the Weighted Number of Late Jobs," Management Science, INFORMS, vol. 34(7), pages 843-858, July.
    5. Zhenyou Wang & Cai-Min Wei & Linhui Sun, 2017. "Solution algorithms for the number of tardy jobs minimisation scheduling with a time-dependent learning effect," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3141-3148, June.
    6. J. T. Linderoth & M. W. P. Savelsbergh, 1999. "A Computational Study of Search Strategies for Mixed Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 173-187, May.
    7. J. Michael Moore, 1968. "An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs," Management Science, INFORMS, vol. 15(1), pages 102-109, September.
    8. M'Hallah, Rym & Bulfin, R. L., 2003. "Minimizing the weighted number of tardy jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 145(1), pages 45-56, February.
    9. Arbib, Claudio & Felici, Giovanni & Servilio, Mara, 2019. "Common operation scheduling with general processing times: A branch-and-cut algorithm to minimize the weighted number of tardy jobs," Omega, Elsevier, vol. 84(C), pages 18-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M'Hallah, Rym & Bulfin, R.L., 2007. "Minimizing the weighted number of tardy jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 176(2), pages 727-744, January.
    2. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    3. Tzafestas, Spyros & Triantafyllakis, Alekos, 1993. "Deterministic scheduling in computing and manufacturing systems: a survey of models and algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 35(5), pages 397-434.
    4. Vincent T’kindt & Federico Della Croce & Jean-Louis Bouquard, 2007. "Enumeration of Pareto Optima for a Flowshop Scheduling Problem with Two Criteria," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 64-72, February.
    5. Danny Hermelin & Shlomo Karhi & Michael Pinedo & Dvir Shabtay, 2021. "New algorithms for minimizing the weighted number of tardy jobs on a single machine," Annals of Operations Research, Springer, vol. 298(1), pages 271-287, March.
    6. M'Hallah, Rym & Bulfin, R. L., 2003. "Minimizing the weighted number of tardy jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 145(1), pages 45-56, February.
    7. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    8. Sachchida Nand Chaurasia & Shyam Sundar & Alok Singh, 2017. "Hybrid metaheuristic approaches for the single machine total stepwise tardiness problem with release dates," Operational Research, Springer, vol. 17(1), pages 275-295, April.
    9. M'Hallah, Rym & Bulfin, R. L., 2005. "Minimizing the weighted number of tardy jobs on parallel processors," European Journal of Operational Research, Elsevier, vol. 160(2), pages 471-484, January.
    10. Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2013. "Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries for multiple customers in supply chains," European Journal of Operational Research, Elsevier, vol. 228(2), pages 345-357.
    11. Koulamas, Christos & Kyparisis, George J., 2001. "Single machine scheduling with release times, deadlines and tardiness objectives," European Journal of Operational Research, Elsevier, vol. 133(2), pages 447-453, January.
    12. Lushchakova, Irene N., 2000. "Minimizing functions of infeasibilities in a two-machine flow shop," European Journal of Operational Research, Elsevier, vol. 121(2), pages 380-393, March.
    13. Marjan Akker & Han Hoogeveen & Judith Stoef, 2018. "Combining two-stage stochastic programming and recoverable robustness to minimize the number of late jobs in the case of uncertain processing times," Journal of Scheduling, Springer, vol. 21(6), pages 607-617, December.
    14. Waldherr, Stefan & Knust, Sigrid, 2015. "Complexity results for flow shop problems with synchronous movement," European Journal of Operational Research, Elsevier, vol. 242(1), pages 34-44.
    15. Jinjiang Yuan, 2017. "Unary NP-hardness of minimizing the number of tardy jobs with deadlines," Journal of Scheduling, Springer, vol. 20(2), pages 211-218, April.
    16. Sevaux, Marc & Dauzere-Peres, Stephane, 2003. "Genetic algorithms to minimize the weighted number of late jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 151(2), pages 296-306, December.
    17. J. M. van den Akker & J. A. Hoogeveen & S. L. van de Velde, 1999. "Parallel Machine Scheduling by Column Generation," Operations Research, INFORMS, vol. 47(6), pages 862-872, December.
    18. Yuan, Jinjiang & Lin, Yixun, 2005. "Single machine preemptive scheduling with fixed jobs to minimize tardiness related criteria," European Journal of Operational Research, Elsevier, vol. 164(3), pages 851-855, August.
    19. Bornstein, Claudio Thomas & Alcoforado, Luciane Ferreira & Maculan, Nelson, 2005. "A graph-oriented approach for the minimization of the number of late jobs for the parallel machines scheduling problem," European Journal of Operational Research, Elsevier, vol. 165(3), pages 649-656, September.
    20. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:298:y:2022:i:2:p:413-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.