IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v242y2015i1p34-44.html
   My bibliography  Save this article

Complexity results for flow shop problems with synchronous movement

Author

Listed:
  • Waldherr, Stefan
  • Knust, Sigrid

Abstract

In this paper we present complexity results for flow shop problems with synchronous movement which are a variant of a non-preemptive permutation flow shop. Jobs have to be moved from one machine to the next by an unpaced synchronous transportation system, which implies that the processing is organized in synchronized cycles. This means that in each cycle the current jobs start at the same time on the corresponding machines and after processing have to wait until the last job is finished. Afterwards, all jobs are moved to the next machine simultaneously. Besides the general situation we also investigate special cases involving machine dominance which means that the processing times of all jobs on a dominating machine are at least as large as the processing times of all jobs on the other machines. Especially, we study flow shops with synchronous movement for a small number of dominating machines (one or two) and different objective functions.

Suggested Citation

  • Waldherr, Stefan & Knust, Sigrid, 2015. "Complexity results for flow shop problems with synchronous movement," European Journal of Operational Research, Elsevier, vol. 242(1), pages 34-44.
  • Handle: RePEc:eee:ejores:v:242:y:2015:i:1:p:34-44
    DOI: 10.1016/j.ejor.2014.09.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714007929
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.09.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. L. Lawler & J. M. Moore, 1969. "A Functional Equation and its Application to Resource Allocation and Sequencing Problems," Management Science, INFORMS, vol. 16(1), pages 77-84, September.
    2. Xiang, S. & Tang, G. & Cheng, T. C. E., 2000. "Solvable cases of permutation flowshop scheduling with dominating machines," International Journal of Production Economics, Elsevier, vol. 66(1), pages 53-57, June.
    3. Karabati, Selcuk & Sayin, Serpil, 2003. "Assembly line balancing in a mixed-model sequencing environment with synchronous transfers," European Journal of Operational Research, Elsevier, vol. 149(2), pages 417-429, September.
    4. P. C. Gilmore & R. E. Gomory, 1964. "Sequencing a One State-Variable Machine: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 12(5), pages 655-679, October.
    5. J. Michael Moore, 1968. "An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs," Management Science, INFORMS, vol. 15(1), pages 102-109, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. S. Panwalkar & Christos Koulamas, 2019. "The evolution of schematic representations of flow shop scheduling problems," Journal of Scheduling, Springer, vol. 22(4), pages 379-391, August.
    2. S. S. Panwalkar & Christos Koulamas, 2020. "Three-stage ordered flow shops with either synchronous flow, blocking or no-idle machines," Journal of Scheduling, Springer, vol. 23(1), pages 145-154, February.
    3. Waldherr, Stefan & Knust, Sigrid, 2017. "Decomposition algorithms for synchronous flow shop problems with additional resources and setup times," European Journal of Operational Research, Elsevier, vol. 259(3), pages 847-863.
    4. Waldherr, Stefan & Knust, Sigrid & Briskorn, Dirk, 2017. "Synchronous flow shop problems: How much can we gain by leaving machines idle?," Omega, Elsevier, vol. 72(C), pages 15-24.
    5. C. Weiß & S. Waldherr & S. Knust & N. V. Shakhlevich, 2017. "Open Shop Scheduling with Synchronization," Journal of Scheduling, Springer, vol. 20(6), pages 557-581, December.
    6. Matthias Bultmann & Sigrid Knust & Stefan Waldherr, 2018. "Flow shop scheduling with flexible processing times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 809-829, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    2. Waldherr, Stefan & Knust, Sigrid, 2017. "Decomposition algorithms for synchronous flow shop problems with additional resources and setup times," European Journal of Operational Research, Elsevier, vol. 259(3), pages 847-863.
    3. Yuan, Jinjiang & Lin, Yixun, 2005. "Single machine preemptive scheduling with fixed jobs to minimize tardiness related criteria," European Journal of Operational Research, Elsevier, vol. 164(3), pages 851-855, August.
    4. Bornstein, Claudio Thomas & Alcoforado, Luciane Ferreira & Maculan, Nelson, 2005. "A graph-oriented approach for the minimization of the number of late jobs for the parallel machines scheduling problem," European Journal of Operational Research, Elsevier, vol. 165(3), pages 649-656, September.
    5. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
    6. Hejl, Lukáš & Šůcha, Přemysl & Novák, Antonín & Hanzálek, Zdeněk, 2022. "Minimizing the weighted number of tardy jobs on a single machine: Strongly correlated instances," European Journal of Operational Research, Elsevier, vol. 298(2), pages 413-424.
    7. M'Hallah, Rym & Bulfin, R.L., 2007. "Minimizing the weighted number of tardy jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 176(2), pages 727-744, January.
    8. Lee, Wen-Chiung & Wu, Chin-Chia, 2004. "Minimizing total completion time in a two-machine flowshop with a learning effect," International Journal of Production Economics, Elsevier, vol. 88(1), pages 85-93, March.
    9. Tzafestas, Spyros & Triantafyllakis, Alekos, 1993. "Deterministic scheduling in computing and manufacturing systems: a survey of models and algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 35(5), pages 397-434.
    10. Sadykov, Ruslan, 2008. "A branch-and-check algorithm for minimizing the weighted number of late jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1284-1304, September.
    11. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    12. Lushchakova, Irene N., 2000. "Minimizing functions of infeasibilities in a two-machine flow shop," European Journal of Operational Research, Elsevier, vol. 121(2), pages 380-393, March.
    13. Danny Hermelin & Shlomo Karhi & Michael Pinedo & Dvir Shabtay, 2021. "New algorithms for minimizing the weighted number of tardy jobs on a single machine," Annals of Operations Research, Springer, vol. 298(1), pages 271-287, March.
    14. Chen, Ke & Cheng, T.C.E. & Huang, Hailiang & Ji, Min & Yao, Danli, 2023. "Single-machine scheduling with autonomous and induced learning to minimize total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 309(1), pages 24-34.
    15. Marjan Akker & Han Hoogeveen & Judith Stoef, 2018. "Combining two-stage stochastic programming and recoverable robustness to minimize the number of late jobs in the case of uncertain processing times," Journal of Scheduling, Springer, vol. 21(6), pages 607-617, December.
    16. Della Croce, Federico & Gupta, Jatinder N. D. & Tadei, Roberto, 2000. "Minimizing tardy jobs in a flowshop with common due date," European Journal of Operational Research, Elsevier, vol. 120(2), pages 375-381, January.
    17. M'Hallah, Rym & Bulfin, R. L., 2003. "Minimizing the weighted number of tardy jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 145(1), pages 45-56, February.
    18. Koulamas, Christos & Kyparisis, George J., 2019. "New results for single-machine scheduling with past-sequence-dependent setup times and due date-related objectives," European Journal of Operational Research, Elsevier, vol. 278(1), pages 149-159.
    19. Ben-Daya, M. & Duffuaa, S. O. & Raouf, A., 1996. "Minimizing mean tardiness subject to unspecified minimum number tardy for a single machine," European Journal of Operational Research, Elsevier, vol. 89(1), pages 100-107, February.
    20. Shabtay, Dvir & Steiner, George & Zhang, Rui, 2016. "Optimal coordination of resource allocation, due date assignment and scheduling decisions," Omega, Elsevier, vol. 65(C), pages 41-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:242:y:2015:i:1:p:34-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.