IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v301y2022i3p815-827.html
   My bibliography  Save this article

Anarchy in the UJ: Coordination mechanisms for minimizing the number of late jobs

Author

Listed:
  • Briskorn, Dirk
  • Waldherr, Stefan

Abstract

We consider the distributed scheduling problem on parallel machines with the central objective of maximizing the number of on-time jobs. Jobs are self-interested utility-maximizers that can choose the machines they are processed on and are exclusively interested in reducing their own private objective function. Each machine processes the jobs according to a local policy. We discuss Nash equilibria in the resulting schedules and perform a thorough analysis of the resulting (absolute) prices of anarchy for various parallel machine environments, utilities of the agents, and local policies of the machines. We show that local policies that are based on simple sorting-based procedures like shortest processing time first (SPT) and earliest due date first (EDD) lead to big losses in welfare compared to the global optimum. However, when employing Moore-Hodgson’s algorithm as a local policy, we can prove a price of anarchy of (2m−1)/m for identical machines and a price of anarchy of 2 for related and unrelated parallel machines. Moreover, we show how these results can be used to prove approximation ratios for greedy scheduling algorithms. This paper is the first to prove approximation ratios for two greedy scheduling procedures, turning them from simple heuristics into actual approximation ratios with a provable approximation ratio.

Suggested Citation

  • Briskorn, Dirk & Waldherr, Stefan, 2022. "Anarchy in the UJ: Coordination mechanisms for minimizing the number of late jobs," European Journal of Operational Research, Elsevier, vol. 301(3), pages 815-827.
  • Handle: RePEc:eee:ejores:v:301:y:2022:i:3:p:815-827
    DOI: 10.1016/j.ejor.2021.11.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172100998X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.11.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yossi Azar & Lisa Fleischer & Kamal Jain & Vahab Mirrokni & Zoya Svitkina, 2015. "Optimal Coordination Mechanisms for Unrelated Machine Scheduling," Operations Research, INFORMS, vol. 63(3), pages 489-500, June.
    2. Lee, Kangbok & Leung, Joseph Y.-T. & Pinedo, Michael L., 2012. "Coordination mechanisms for parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 220(2), pages 305-313.
    3. Nisan, Noam & Ronen, Amir, 2001. "Algorithmic Mechanism Design," Games and Economic Behavior, Elsevier, vol. 35(1-2), pages 166-196, April.
    4. Zhi-Long Chen & Warren B. Powell, 1999. "Solving Parallel Machine Scheduling Problems by Column Generation," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 78-94, February.
    5. Ho, Johnny C. & Chang, Yih-Long, 1995. "Minimizing the number of tardy jobs for m parallel machines," European Journal of Operational Research, Elsevier, vol. 84(2), pages 343-355, July.
    6. Birgit Heydenreich & Rudolf Müller & Marc Uetz, 2010. "Mechanism Design for Decentralized Online Machine Scheduling," Operations Research, INFORMS, vol. 58(2), pages 445-457, April.
    7. Jacek Blazewicz & Klaus H. Ecker & Erwin Pesch & Günter Schmidt & Malgorzata Sterna & Jan Weglarz, 2019. "Handbook on Scheduling," International Handbooks on Information Systems, Springer, edition 2, number 978-3-319-99849-7, November.
    8. J. Michael Moore, 1968. "An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs," Management Science, INFORMS, vol. 15(1), pages 102-109, September.
    9. M'Hallah, Rym & Bulfin, R. L., 2005. "Minimizing the weighted number of tardy jobs on parallel processors," European Journal of Operational Research, Elsevier, vol. 160(2), pages 471-484, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz-Torres, Alex J. & Lopez, Francisco J. & Ho, Johnny C., 2007. "Scheduling uniform parallel machines subject to a secondary resource to minimize the number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 179(2), pages 302-315, June.
    2. M'Hallah, Rym & Bulfin, R. L., 2005. "Minimizing the weighted number of tardy jobs on parallel processors," European Journal of Operational Research, Elsevier, vol. 160(2), pages 471-484, January.
    3. Ruiz-Torres, Alex J. & Ho, Johnny C. & Lopez, Francisco J., 2006. "Generating Pareto schedules with outsource and internal parallel resources," International Journal of Production Economics, Elsevier, vol. 103(2), pages 810-825, October.
    4. Wang, Xiuli & Cheng, T.C.E., 2015. "A heuristic for scheduling jobs on two identical parallel machines with a machine availability constraint," International Journal of Production Economics, Elsevier, vol. 161(C), pages 74-82.
    5. Gupta, Jatinder N. D. & Ho, Johnny C., 1996. "Scheduling with two job classes and setup times to minimize the number of tardy jobs," International Journal of Production Economics, Elsevier, vol. 42(3), pages 205-216, April.
    6. Chen, Qianqian & Lin, Ling & Tan, Zhiyi & Yan, Yujie, 2017. "Coordination mechanisms for scheduling games with proportional deterioration," European Journal of Operational Research, Elsevier, vol. 263(2), pages 380-389.
    7. Pereira Lopes, Manuel J. & de Carvalho, J.M. Valerio, 2007. "A branch-and-price algorithm for scheduling parallel machines with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1508-1527, February.
    8. Bornstein, Claudio Thomas & Alcoforado, Luciane Ferreira & Maculan, Nelson, 2005. "A graph-oriented approach for the minimization of the number of late jobs for the parallel machines scheduling problem," European Journal of Operational Research, Elsevier, vol. 165(3), pages 649-656, September.
    9. A J Ruiz-Torres & F J López & P J Wojciechowski & J C Ho, 2010. "Parallel machine scheduling problems considering regular measures of performance and machine cost," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 849-857, May.
    10. Boysen, Nils & Fliedner, Malte, 2010. "Cross dock scheduling: Classification, literature review and research agenda," Omega, Elsevier, vol. 38(6), pages 413-422, December.
    11. Ben-Daya, M. & Duffuaa, S. O. & Raouf, A., 1996. "Minimizing mean tardiness subject to unspecified minimum number tardy for a single machine," European Journal of Operational Research, Elsevier, vol. 89(1), pages 100-107, February.
    12. Fang Lu & John J. Hasenbein & David P. Morton, 2016. "Modeling and Optimization of a Spatial Detection System," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 512-526, August.
    13. Xiayan Cheng & Rongheng Li & Yunxia Zhou, 0. "Tighter price of anarchy for selfish task allocation on selfish machines," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-32.
    14. Dunstall, Simon & Wirth, Andrew, 2005. "A comparison of branch-and-bound algorithms for a family scheduling problem with identical parallel machines," European Journal of Operational Research, Elsevier, vol. 167(2), pages 283-296, December.
    15. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.
    16. Kramer, Arthur & Dell’Amico, Mauro & Iori, Manuel, 2019. "Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines," European Journal of Operational Research, Elsevier, vol. 275(1), pages 67-79.
    17. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    18. Nicholas G. Hall & Marc E. Posner & Chris N. Potts, 2021. "Online production planning to maximize the number of on-time orders," Annals of Operations Research, Springer, vol. 298(1), pages 249-269, March.
    19. Roberto Cordone & Pierre Hosteins & Giovanni Righini, 2018. "A Branch-and-Bound Algorithm for the Prize-Collecting Single-Machine Scheduling Problem with Deadlines and Total Tardiness Minimization," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 168-180, February.
    20. Levin, Hagay & Schapira, Michael & Zohar, Aviv, 2006. "The Strategic Justification for BGP," MPRA Paper 2110, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:301:y:2022:i:3:p:815-827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.