IDEAS home Printed from https://ideas.repec.org/r/eee/transb/v83y2016icp207-229.html
   My bibliography  Save this item

Shipping log data based container ship fuel efficiency modeling

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kai Li & Yongqiang Zhuo & Xiaoqing Luo, 2022. "Optimization method of fuel saving and cost reduction of tugboat main engine based on genetic algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 605-614, March.
  2. Petri Helo & Henri Paukku & Tero Sairanen, 2021. "Containership cargo profiles, cargo systems, and stowage capacity: key performance indicators," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 28-48, March.
  3. Zhang, Yiru & Meng, Qiang & Ng, Szu Hui, 2016. "Shipping efficiency comparison between Northern Sea Route and the conventional Asia-Europe shipping route via Suez Canal," Journal of Transport Geography, Elsevier, vol. 57(C), pages 241-249.
  4. Nguyen, Son & Fu, Xiuju & Ogawa, Daichi & Zheng, Qin, 2023. "An application-oriented testing regime and multi-ship predictive modeling for vessel fuel consumption prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
  5. Sheng, Dian & Wang, YiYao & Wang, Hua & Liu, Baoli & Tang, Tianpei, 2024. "Enforcement of the global sulphur cap: Can self-reporting provide a better solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
  6. Koçak, Saim Turgut & Yercan, Funda, 2021. "Comparative cost-effectiveness analysis of Arctic and international shipping routes: A Fuzzy Analytic Hierarchy Process," Transport Policy, Elsevier, vol. 114(C), pages 147-164.
  7. Yan, Ran & Yang, Dong & Wang, Tianyu & Mo, Haoyu & Wang, Shuaian, 2024. "Improving ship energy efficiency: Models, methods, and applications," Applied Energy, Elsevier, vol. 368(C).
  8. Luo, Xi & Yan, Ran & Xu, Lang & Wang, Shuaian, 2024. "Accuracy and applicability of ship's fuel consumption prediction models: A comprehensive comparative analysis," Energy, Elsevier, vol. 310(C).
  9. Fan, Ailong & Wang, Yifu & Yang, Liu & Yang, Zhiyong & Hu, Zhihui, 2025. "A novel grey box model for ship fuel consumption prediction adapted to complex navigating conditions," Energy, Elsevier, vol. 315(C).
  10. Tan, Zhijia & Zeng, Xianyang & Shao, Shuai & Chen, Jihong & Wang, Hua, 2022. "Scrubber installation and green fuel for inland river ships with non-identical streamflow," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
  11. Wang, Yadong & Wang, Shuaian, 2021. "Deploying, scheduling, and sequencing heterogeneous vessels in a liner container shipping route," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
  12. Son Nguyen & Aengus Leman & Zhe Xiao & Xiuju Fu & Xiaocai Zhang & Xiaoyang Wei & Wanbing Zhang & Ning Li & Wei Zhang & Zheng Qin, 2023. "Blockchain-Powered Incentive System for JIT Arrival Operations and Decarbonization in Maritime Shipping," Sustainability, MDPI, vol. 15(22), pages 1-22, November.
  13. Ding, Yanyan & Yang, Dong, 2025. "Should an electric vehicle manufacturer buy its own ship? Investment and pricing strategies under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 195(C).
  14. Liqian Yang & Gang Chen & Jinlou Zhao & Niels Gorm Malý Rytter, 2020. "Ship Speed Optimization Considering Ocean Currents to Enhance Environmental Sustainability in Maritime Shipping," Sustainability, MDPI, vol. 12(9), pages 1-24, May.
  15. Tan, Zhijia & Zhang, Ming & Shao, Shuai & Liang, Jinpeng & Sheng, Dian, 2022. "Evasion strategy for a coastal cargo ship with unpunctual arrival penalty under sulfur emission regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
  16. Zhijia Tan & Yadong Wang & Qiang Meng & Zhixue Liu, 2018. "Joint Ship Schedule Design and Sailing Speed Optimization for a Single Inland Shipping Service with Uncertain Dam Transit Time," Service Science, INFORMS, vol. 52(6), pages 1570-1588, December.
  17. Du, Yuquan & Meng, Qiang & Wang, Shuaian & Kuang, Haibo, 2019. "Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 88-114.
  18. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
  19. Adland, Roar & Cariou, Pierre & Wolff, Francois-Charles, 2020. "Optimal ship speed and the cubic law revisited: Empirical evidence from an oil tanker fleet," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
  20. Xia, Jun & Wang, Kai & Wang, Shuaian, 2019. "Drone scheduling to monitor vessels in emission control areas," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 174-196.
  21. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
  22. Yan, Ran & Wang, Shuaian & Psaraftis, Harilaos N., 2021. "Data analytics for fuel consumption management in maritime transportation: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
  23. Ruan, Zhang & Huang, Lianzhong & Li, Daize & Ma, Ranqi & Wang, Kai & Zhang, Rui & Zhao, Haoyang & Wu, Jianyi & Li, Xiaowu, 2025. "A novel dual-stage grey-box stacking method for significantly improving the extrapolation performance of ship fuel consumption prediction models," Energy, Elsevier, vol. 318(C).
  24. Zhen, Lu & Hu, Yi & Wang, Shuaian & Laporte, Gilbert & Wu, Yiwei, 2019. "Fleet deployment and demand fulfillment for container shipping liners," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 15-32.
  25. Stéphane Grandcolas, 2022. "A Metaheuristic Algorithm for Ship Weather Routing," SN Operations Research Forum, Springer, vol. 3(3), pages 1-16, September.
  26. Wang, Shuaian & Wang, Xinchang, 2016. "A polynomial-time algorithm for sailing speed optimization with containership resource sharing," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 394-405.
  27. Lee, Sang-Jeong & Sun, Qinghe & Meng, Qiang, 2023. "Vessel weather routing subject to sulfur emission regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
  28. Qi Hong & Xuecheng Tian & Yong Jin & Zhiyuan Liu & Shuaian Wang, 2025. "Improved Fuel Consumption Estimation for Sailing Speed Optimization: Eliminating Log Transformation Bias," Mathematics, MDPI, vol. 13(12), pages 1-20, June.
  29. Canan G. Corlu & Rocio de la Torre & Adrian Serrano-Hernandez & Angel A. Juan & Javier Faulin, 2020. "Optimizing Energy Consumption in Transportation: Literature Review, Insights, and Research Opportunities," Energies, MDPI, vol. 13(5), pages 1-33, March.
  30. Mohammed H. Alshareef & Ayman F. Alghanmi, 2024. "Optimizing Maritime Energy Efficiency: A Machine Learning Approach Using Deep Reinforcement Learning for EEXI and CII Compliance," Sustainability, MDPI, vol. 16(23), pages 1-28, November.
  31. Park, Seongbeom & Lee, Hyunju & Kim, Dowon, 2024. "Regulatory compliance and operational efficiency in maritime transport: Strategies and insights," Transport Policy, Elsevier, vol. 155(C), pages 161-177.
  32. Wang, Yadong & Zhang, Huming & Wang, Tingsong & Liu, Jinping, 2025. "Heterogeneous vessel fleet co-management for liner alliances under profit-sharing agreement and weekly-dependent demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
  33. Ge, Fangsheng & Beullens, Patrick & Hudson, Dominic, 2021. "Optimal economic ship speeds, the chain effect, and future profit potential," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 168-196.
  34. Elsisi, Mahmoud & Amer, Mohammed & Su, Chun-Lien & Aljohani, Tawfiq & Ali, Mahmoud N. & Sharawy, Mohamed, 2025. "A comprehensive review of machine learning and Internet of Things integrations for emission monitoring and resilient sustainable energy management of ships in port areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 218(C).
  35. Zhen, Lu & Wang, Shuaian & Zhuge, Dan, 2017. "Dynamic programming for optimal ship refueling decision," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 63-74.
  36. Wang, Yangjun & Liu, Kefeng & Zhang, Ren & Qian, Longxia & Shan, Yulong, 2021. "Feasibility of the Northeast Passage: The role of vessel speed, route planning, and icebreaking assistance determined by sea-ice conditions for the container shipping market during 2020–2030," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
  37. Beullens, Patrick & Ge, Fangsheng & Hudson, Dominic, 2023. "The economic ship speed under time charter contract—A cash flow approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.