IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v119y2019icp174-196.html
   My bibliography  Save this article

Drone scheduling to monitor vessels in emission control areas

Author

Listed:
  • Xia, Jun
  • Wang, Kai
  • Wang, Shuaian

Abstract

The use of drones to monitor the emissions of vessels has recently attracted wide attention because of its great potentials for enforcing regulations in emission control areas (ECAs). Motivated by this potential application, we study how drones can be scheduled to monitor the sailing vessels in ECAs, which is defined as a drone scheduling problem (DSP) in this paper. The objective of the DSP is to design a group of flight tours for drones, including the inspection sequence and timings for the vessels, such that as many vessels as possible can be inspected during a given time period while prioritizing highly weighted vessels for inspection. We show that the DSP can be regarded as a generalized team orienteering problem, which is known to be NP-hard, and deriving solutions for this problem can be more difficult because additional complicated features, such as time-dependent locations, multiple trips for a drone, and multiple stations (or depots), are addressed simultaneously. To overcome these difficulties, we model the dynamics of each sailing vessel using a real-time location function in a deterministic fashion. This approach allows us to approximately represent the problem on a time-expanded network, based on which a network flow-based formulation can be formally developed. To solve this proposed formulation, we further develop a Lagrangian relaxation-based method that can obtain near-optimal solutions for large-scale instances of the problem. Numerical experiments based on practically generated instances with 300 time points and up to 100 vessels are conducted to validate the effectiveness and efficiency of the proposed method. Results show that our method derives tight upper bounds on optimal solutions, and can quickly return good feasible solutions for the tested instances. We also conduct experiments based on realistic tracking data to demonstrate the usefulness of our solutions, including those for the cases considering the uncertainty of vessel locations.

Suggested Citation

  • Xia, Jun & Wang, Kai & Wang, Shuaian, 2019. "Drone scheduling to monitor vessels in emission control areas," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 174-196.
  • Handle: RePEc:eee:transb:v:119:y:2019:i:c:p:174-196
    DOI: 10.1016/j.trb.2018.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518303655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marshall L. Fisher, 2004. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 50(12_supple), pages 1861-1871, December.
    2. B. L. Golden & Qiwen Wang & Li Liu, 1988. "A multifaceted heuristic for the orienteering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(3), pages 359-366, June.
    3. Kirschstein, Thomas & Meisel, Frank, 2015. "GHG-emission models for assessing the eco-friendliness of road and rail freight transports," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 13-33.
    4. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    5. Zheng, Shiyuan & Ge, Ying-En & Fu, Xiaowen & Nie, Yu (Marco) & Xie, Chi, 2017. "Modeling collusion-proof port emission regulation of cargo-handling activities under incomplete information," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 543-567.
    6. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    7. Ke, Liangjun & Zhai, Laipeng & Li, Jing & Chan, Felix T.S., 2016. "Pareto mimic algorithm: An approach to the team orienteering problem," Omega, Elsevier, vol. 61(C), pages 155-166.
    8. Valentina Cacchiani & Alberto Caprara & Matteo Fischetti, 2012. "A Lagrangian Heuristic for Robustness, with an Application to Train Timetabling," Transportation Science, INFORMS, vol. 46(1), pages 124-133, February.
    9. Meng, Qiang & Du, Yuquan & Wang, Yadong, 2016. "Shipping log data based container ship fuel efficiency modeling," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 207-229.
    10. Morteza Keshtkaran & Koorush Ziarati & Andrea Bettinelli & Daniele Vigo, 2016. "Enhanced exact solution methods for the Team Orienteering Problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 591-601, January.
    11. Xiao, Yi-bin & Fu, Xiaowen & Ng, Adolf K.Y. & Zhang, Anming, 2015. "Port investments on coastal and marine disasters prevention: Economic modeling and implications," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 202-221.
    12. Ng, ManWo & Lo, Hong K., 2016. "Robust models for transportation service network design," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 378-386.
    13. Yan Xia & Rajan Batta & Rakesh Nagi, 2017. "Controlling a Fleet of Unmanned Aerial Vehicles to Collect Uncertain Information in a Threat Environment," Operations Research, INFORMS, vol. 65(3), pages 674-692, June.
    14. Chase C. Murray & Mark H. Karwan, 2010. "An extensible modeling framework for dynamic reassignment and rerouting in cooperative airborne operations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(7), pages 634-652, October.
    15. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    16. Lin, Shih-Wei & Yu, Vincent F., 2012. "A simulated annealing heuristic for the team orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 217(1), pages 94-107.
    17. Claudia Archetti & M. Grazia Speranza & Ángel Corberán & José M. Sanchis & Isaac Plana, 2014. "The Team Orienteering Arc Routing Problem," Transportation Science, INFORMS, vol. 48(3), pages 442-457, August.
    18. Alberto Caprara & Matteo Fischetti & Paolo Toth, 2002. "Modeling and Solving the Train Timetabling Problem," Operations Research, INFORMS, vol. 50(5), pages 851-861, October.
    19. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    20. Ng, ManWo, 2015. "Container vessel fleet deployment for liner shipping with stochastic dependencies in shipping demand," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 79-87.
    21. Marshall L. Fisher, 2004. "Comments on ÜThe Lagrangian Relaxation Method for Solving Integer Programming ProblemsÝ," Management Science, INFORMS, vol. 50(12_supple), pages 1872-1874, December.
    22. He, Qie & Zhang, Xiaochen & Nip, Kameng, 2017. "Speed optimization over a path with heterogeneous arc costs," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 198-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amine Masmoudi, M. & Mancini, Simona & Baldacci, Roberto & Kuo, Yong-Hong, 2022. "Vehicle routing problems with drones equipped with multi-package payload compartments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Lingyue Li & Suixiang Gao & Wenguo Yang, 2022. "The enforcement of ECA regulations: inspection strategy for on-board fuel sampling," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2551-2576, November.
    3. Choi, Shinwon & Lee, Minseo & Park, Hyejin & Han, Jinil, 2024. "Mathematical programming-based heuristic for highway patrol drone scheduling problem," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    4. Niu, Baozhuang & Zhang, Jianhua & Xie, Fengfeng, 2024. "Drone logistics’ resilient development: impacts of consumer choice, competition, and regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    5. Wei Zhang & Kai Wang & Shuaian Wang & Gilbert Laporte, 2020. "Clustered coverage orienteering problem of unmanned surface vehicles for water sampling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(5), pages 353-367, August.
    6. Fang, Chao & Han, Zonglei & Wang, Wei & Zio, Enrico, 2023. "Routing UAVs in landslides Monitoring: A neural network heuristic for team orienteering with mandatory visits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    7. Zandieh, Fatemeh & Ghannadpour, Seyed Farid & Mazdeh, Mohammad Mahdavi, 2024. "New integrated routing and surveillance model with drones and charging station considerations," European Journal of Operational Research, Elsevier, vol. 313(2), pages 527-547.
    8. Sheng, Dian & Wang, YiYao & Wang, Hua & Liu, Baoli & Tang, Tianpei, 2024. "Enforcement of the global sulphur cap: Can self-reporting provide a better solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
    9. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    10. Zis, Thalis P.V., 2021. "A game theoretic approach on improving sulphur compliance," Transport Policy, Elsevier, vol. 114(C), pages 127-137.
    11. Hongming Li & Xintao Li, 2022. "A Branch-and-Bound Algorithm for the Bi-Objective Quay Crane Scheduling Problem Based on Efficiency and Energy," Mathematics, MDPI, vol. 10(24), pages 1-20, December.
    12. Lixin Shen & Jie Sun & Dong Yang, 2024. "Research on Path Optimization for Collaborative UAVs and Mothership Monitoring of Air Pollution from Port Vessels," Sustainability, MDPI, vol. 16(12), pages 1-33, June.
    13. Shen, Lixin & Wang, Yaodong & Liu, Kunpeng & Yang, Zaili & Shi, Xiaowen & Yang, Xu & Jing, Ke, 2020. "Synergistic path planning of multi-UAVs for air pollution detection of ships in ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    14. Tamke, Felix & Buscher, Udo, 2021. "A branch-and-cut algorithm for the vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 174-203.
    15. Johannes Schmidt & Armin Fügenschuh, 2023. "A two-time-level model for mission and flight planning of an inhomogeneous fleet of unmanned aerial vehicles," Computational Optimization and Applications, Springer, vol. 85(1), pages 293-335, May.
    16. Zhang, Guowei & Jia, Ning & Zhu, Ning & Adulyasak, Yossiri & Ma, Shoufeng, 2023. "Robust drone selective routing in humanitarian transportation network assessment," European Journal of Operational Research, Elsevier, vol. 305(1), pages 400-428.
    17. Gorana Mudronja & Alen Jugoviæ & Dunja Škalamera-Aliloviæ, 2019. "Research and Development and Economic Growth: EU Port Regions," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(2), pages 587-602.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Guowei & Jia, Ning & Zhu, Ning & Adulyasak, Yossiri & Ma, Shoufeng, 2023. "Robust drone selective routing in humanitarian transportation network assessment," European Journal of Operational Research, Elsevier, vol. 305(1), pages 400-428.
    2. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    3. Kirac, Emre & Milburn, Ashlea Bennett, 2018. "A general framework for assessing the value of social data for disaster response logistics planning," European Journal of Operational Research, Elsevier, vol. 269(2), pages 486-500.
    4. Antonio R. Uguina & Juan F. Gomez & Javier Panadero & Anna Martínez-Gavara & Angel A. Juan, 2024. "A Learnheuristic Algorithm Based on Thompson Sampling for the Heterogeneous and Dynamic Team Orienteering Problem," Mathematics, MDPI, vol. 12(11), pages 1-19, June.
    5. Zhao, Yanlu & Alfandari, Laurent, 2020. "Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach," European Journal of Operational Research, Elsevier, vol. 285(3), pages 825-843.
    6. Christos Orlis & Nicola Bianchessi & Roberto Roberti & Wout Dullaert, 2020. "The Team Orienteering Problem with Overlaps: An Application in Cash Logistics," Transportation Science, INFORMS, vol. 54(2), pages 470-487, March.
    7. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    8. Orlis, Christos & Laganá, Demetrio & Dullaert, Wout & Vigo, Daniele, 2020. "Distribution with Quality of Service Considerations: The Capacitated Routing Problem with Profits and Service Level Requirements," Omega, Elsevier, vol. 93(C).
    9. Jost, Christian & Jungwirth, Alexander & Kolisch, Rainer & Schiffels, Sebastian, 2022. "Consistent vehicle routing with pickup decisions - Insights from sport academy training transfers," European Journal of Operational Research, Elsevier, vol. 298(1), pages 337-350.
    10. Katharina Glock & Anne Meyer, 2020. "Mission Planning for Emergency Rapid Mapping with Drones," Transportation Science, INFORMS, vol. 54(2), pages 534-560, March.
    11. He, Mu & Wu, Qinghua & Benlic, Una & Lu, Yongliang & Chen, Yuning, 2024. "An effective multi-level memetic search with neighborhood reduction for the clustered team orienteering problem," European Journal of Operational Research, Elsevier, vol. 318(3), pages 778-801.
    12. Meyer, Anne & Glock, Katharina & Radaschewski, Frank, 2021. "Planning profitable tours for field sales forces: A unified view on sales analytics and mathematical optimization," Omega, Elsevier, vol. 105(C).
    13. Kobeaga, Gorka & Rojas-Delgado, Jairo & Merino, María & Lozano, Jose A., 2024. "A revisited branch-and-cut algorithm for large-scale orienteering problems," European Journal of Operational Research, Elsevier, vol. 313(1), pages 44-68.
    14. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    15. Yanjie Zhou & Gyu M. Lee, 2017. "A Lagrangian Relaxation-Based Solution Method for a Green Vehicle Routing Problem to Minimize Greenhouse Gas Emissions," Sustainability, MDPI, vol. 9(5), pages 1-17, May.
    16. Riera-Ledesma, Jorge & Salazar-González, Juan José, 2017. "Solving the Team Orienteering Arc Routing Problem with a column generation approach," European Journal of Operational Research, Elsevier, vol. 262(1), pages 14-27.
    17. Shen, Lixin & Wang, Yaodong & Liu, Kunpeng & Yang, Zaili & Shi, Xiaowen & Yang, Xu & Jing, Ke, 2020. "Synergistic path planning of multi-UAVs for air pollution detection of ships in ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    18. Morandi, Nicola & Leus, Roel & Yaman, Hande, 2024. "The orienteering problem with drones," Other publications TiSEM 593f31f0-7b7b-4069-84ca-8, Tilburg University, School of Economics and Management.
    19. Alejandro Estrada-Moreno & Albert Ferrer & Angel A. Juan & Javier Panadero & Adil Bagirov, 2020. "The Non-Smooth and Bi-Objective Team Orienteering Problem with Soft Constraints," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
    20. Aldy Gunawan & Hoong Chuin Lau & Pieter Vansteenwegen & Kun Lu, 2017. "Well-tuned algorithms for the Team Orienteering Problem with Time Windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(8), pages 861-876, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:119:y:2019:i:c:p:174-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.