IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v144y2020ics1366554520307766.html
   My bibliography  Save this article

Synergistic path planning of multi-UAVs for air pollution detection of ships in ports

Author

Listed:
  • Shen, Lixin
  • Wang, Yaodong
  • Liu, Kunpeng
  • Yang, Zaili
  • Shi, Xiaowen
  • Yang, Xu
  • Jing, Ke

Abstract

The phenomena of the COVID-19 outbreak and the Arctic Iceberg melting over the past two years make us reconsider the impact our way of life has on the environment and the responsibility of business toward minimizing and potentially eliminating emissions. Increasing ship traffic in ports leads to the growing emission of air pollutants, which influences the air quality and public health in the surrounding areas. The International Maritime Organization (IMO) has adopted relevant regulations (e.g., Annex VI of IMO's pollution prevention treaty (MARPOL) and mandatory energy-efficiency measures) to address ship emissions. To ensure the effective implementation of such regulations and measures, air emission detection and monitoring has become crucial. In this paper, a dynamic multitarget path planning model is developed to realize multi-UAVs (Unmanned Aerial Vehicles) performing synergistic detection of ship emissions in ports. A path planning algorithm under a dynamic environment is developed to establish the model. This algorithm incorporates a Tabu table into particle swarm optimization (PSO) to improve its optimization ability, and it obtains the initial detection route of each UAV based on a “minimum ring” method. This paper describes a multi-UAVs synergistic algorithm to formulate the path reprogramming time in a dynamic environment by judging and cutting the “minimum ring”. This finding proves the improved efficiency of air pollution detection by UAVs. It provides useful insights for maritime and port authorities to detect ship emissions in practice and to ensure ship emission reduction for better air quality in the postpandemic era.

Suggested Citation

  • Shen, Lixin & Wang, Yaodong & Liu, Kunpeng & Yang, Zaili & Shi, Xiaowen & Yang, Xu & Jing, Ke, 2020. "Synergistic path planning of multi-UAVs for air pollution detection of ships in ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:transe:v:144:y:2020:i:c:s1366554520307766
    DOI: 10.1016/j.tre.2020.102128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554520307766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.102128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Shiyuan & Ge, Ying-En & Fu, Xiaowen & Nie, Yu (Marco) & Xie, Chi, 2017. "Modeling collusion-proof port emission regulation of cargo-handling activities under incomplete information," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 543-567.
    2. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    3. Wang, Shuaian & Zhen, Lu & Zhuge, Dan, 2018. "Dynamic programming algorithms for selection of waste disposal ports in cruise shipping," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 235-248.
    4. Yan Xia & Rajan Batta & Rakesh Nagi, 2017. "Controlling a Fleet of Unmanned Aerial Vehicles to Collect Uncertain Information in a Threat Environment," Operations Research, INFORMS, vol. 65(3), pages 674-692, June.
    5. Xia, Jun & Wang, Kai & Wang, Shuaian, 2019. "Drone scheduling to monitor vessels in emission control areas," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 174-196.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faten Aljalaud & Heba Kurdi & Kamal Youcef-Toumi, 2023. "Bio-Inspired Multi-UAV Path Planning Heuristics: A Review," Mathematics, MDPI, vol. 11(10), pages 1-35, May.
    2. Song, Zhuzhu & Tang, Wansheng & Zhao, Ruiqing & Zhang, Guoqing, 2022. "Implications of government subsidies on shipping companies’ shore power usage strategies in port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    3. Li, Huanhuan & Jiao, Hang & Yang, Zaili, 2023. "AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    4. Fang, Chao & Han, Zonglei & Wang, Wei & Zio, Enrico, 2023. "Routing UAVs in landslides Monitoring: A neural network heuristic for team orienteering with mandatory visits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    5. He, Xinyu & He, Fang & Li, Lishuai & Zhang, Lei & Xiao, Gang, 2022. "A route network planning method for urban air delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    2. Xia, Jun & Wang, Kai & Wang, Shuaian, 2019. "Drone scheduling to monitor vessels in emission control areas," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 174-196.
    3. Zhang, Guowei & Jia, Ning & Zhu, Ning & Adulyasak, Yossiri & Ma, Shoufeng, 2023. "Robust drone selective routing in humanitarian transportation network assessment," European Journal of Operational Research, Elsevier, vol. 305(1), pages 400-428.
    4. Tamke, Felix & Buscher, Udo, 2021. "A branch-and-cut algorithm for the vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 174-203.
    5. Chiang, Wen-Chyuan & Li, Yuyu & Shang, Jennifer & Urban, Timothy L., 2019. "Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization," Applied Energy, Elsevier, vol. 242(C), pages 1164-1175.
    6. Pei, Zhi & Dai, Xu & Yuan, Yilun & Du, Rui & Liu, Changchun, 2021. "Managing price and fleet size for courier service with shared drones," Omega, Elsevier, vol. 104(C).
    7. Qiqian Zhang & Xiao Huang & Honghai Zhang & Chunyun He, 2023. "Research on Logistics Path Optimization for a Two-Stage Collaborative Delivery System Using Vehicles and UAVs," Sustainability, MDPI, vol. 15(17), pages 1-20, September.
    8. Stefan Poikonen & Bruce Golden, 2020. "The Mothership and Drone Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 249-262, April.
    9. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
    10. Luigi Di Puglia Pugliese & Francesca Guerriero & Maria Grazia Scutellá, 2021. "The Last-Mile Delivery Process with Trucks and Drones Under Uncertain Energy Consumption," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 31-67, October.
    11. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing," Annals of Operations Research, Springer, vol. 327(1), pages 89-127, August.
    12. Zheng, Shiyuan & Jiang, Changmin & Fu, Xiaowen, 2021. "Investment competition on dedicated terminals under demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    13. Vincent F. Yu & Shih-Wei Lin & Panca Jodiawan & Yu-Chi Lai, 2023. "Solving the Flying Sidekick Traveling Salesman Problem by a Simulated Annealing Heuristic," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    14. Snežana Tadić & Mladen Krstić & Ljubica Radovanović, 2024. "Assessing Strategies to Overcome Barriers for Drone Usage in Last-Mile Logistics: A Novel Hybrid Fuzzy MCDM Model," Mathematics, MDPI, vol. 12(3), pages 1-25, January.
    15. Mohammad Moshref-Javadi & Kristof P. Cauwenberghe & Brent A. McCunney & Ahmad Hemmati, 2023. "Enabling same-day delivery using a drone resupply model with transshipment points," Computational Management Science, Springer, vol. 20(1), pages 1-31, December.
    16. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    17. Jeong, Ho Young & Yu, David J. & Min, Byung-Cheol & Lee, Seokcheon, 2020. "The humanitarian flying warehouse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    18. Zhao, Lei & Bi, Xinhua & Li, Gendao & Dong, Zhaohui & Xiao, Ni & Zhao, Anni, 2022. "Robust traveling salesman problem with multiple drones: Parcel delivery under uncertain navigation environments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    19. Kloster, Konstantin & Moeini, Mahdi & Vigo, Daniele & Wendt, Oliver, 2023. "The multiple traveling salesman problem in presence of drone- and robot-supported packet stations," European Journal of Operational Research, Elsevier, vol. 305(2), pages 630-643.
    20. Tiniç, Gizem Ozbaygin & Karasan, Oya E. & Kara, Bahar Y. & Campbell, James F. & Ozel, Aysu, 2023. "Exact solution approaches for the minimum total cost traveling salesman problem with multiple drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 81-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:144:y:2020:i:c:s1366554520307766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.