IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v197y2025ics1366554525000882.html
   My bibliography  Save this article

Parcel delivery by vehicle and drone in ordered customer neighborhoods

Author

Listed:
  • Ghoniem, Ahmed
  • Boz, Semih
  • El-Adle, Amro M.

Abstract

We consider a last-mile parcel delivery problem where a vehicle with a companion drone visits a set of ordered neighborhoods, following a line of travel that starts and ends at the depot. The decision-maker restricts the drone to fly within the neighborhood being serviced by the vehicle and seeks to optimize the vehicle and drone operations so that the total time to return to the depot, upon completing all deliveries, is minimized. The problem is formulated as a mixed-integer program, which is enhanced via cut-set constraints and valid inequalities derived using the Reformulation-Linearization Technique (RLT). Further, we investigate the logistical and computational effects of optionally imposing street precedence rules, based on training data from numerous optimized solutions for instances constructed in Amherst, MA (USA). Our study examines the computational tractability of the baseline model, the usefulness of imposing valid inequalities, and the impact of enforcing street precedence rules. Remarkably, enforcing RLT-based valid inequalities enables, in our experience, optimal solutions for instances having up to 200 customers within manageable times, thereby yielding a practical optimization-based framework for decision-makers.

Suggested Citation

  • Ghoniem, Ahmed & Boz, Semih & El-Adle, Amro M., 2025. "Parcel delivery by vehicle and drone in ordered customer neighborhoods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:transe:v:197:y:2025:i:c:s1366554525000882
    DOI: 10.1016/j.tre.2025.104047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525000882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uğur Arıkan & Thorsten Kranz & Baris Cem Sal & Severin Schmitt & Jonas Witt, 2023. "Human-Centric Parcel Delivery at Deutsche Post with Operations Research and Machine Learning," Interfaces, INFORMS, vol. 53(5), pages 359-371, September.
    2. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    3. Amro M. El-Adle & Ahmed Ghoniem & Mohamed Haouari, 2021. "Parcel delivery by vehicle and drone," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(2), pages 398-416, February.
    4. Quirion-Blais, Olivier & Chen, Lu, 2021. "A case-based reasoning approach to solve the vehicle routing problem with time windows and drivers’ experience," Omega, Elsevier, vol. 102(C).
    5. Hanif D. Sherali & Patrick J. Driscoll, 2002. "On Tightening the Relaxations of Miller-Tucker-Zemlin Formulations for Asymmetric Traveling Salesman Problems," Operations Research, INFORMS, vol. 50(4), pages 656-669, August.
    6. Stefan Poikonen & Bruce Golden & Edward A. Wasil, 2019. "A Branch-and-Bound Approach to the Traveling Salesman Problem with a Drone," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 335-346, April.
    7. Mbiadou Saleu, Raïssa G. & Deroussi, Laurent & Feillet, Dominique & Grangeon, Nathalie & Quilliot, Alain, 2022. "The parallel drone scheduling problem with multiple drones and vehicles," European Journal of Operational Research, Elsevier, vol. 300(2), pages 571-589.
    8. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    9. Gao, Jiajing & Zhen, Lu & Laporte, Gilbert & He, Xueting, 2023. "Scheduling trucks and drones for cooperative deliveries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
    10. Salama, Mohamed R. & Srinivas, Sharan, 2022. "Collaborative truck multi-drone routing and scheduling problem: Package delivery with flexible launch and recovery sites," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    11. Roberto Roberti & Mario Ruthmair, 2021. "Exact Methods for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 55(2), pages 315-335, March.
    12. Meng, Shanshan & Guo, Xiuping & Li, Dong & Liu, Guoquan, 2023. "The multi-visit drone routing problem for pickup and delivery services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    2. Ren, Xuan & Froger, Aurélien & Jabali, Ola & Liang, Gongqian, 2024. "A competitive heuristic algorithm for vehicle routing problems with drones," European Journal of Operational Research, Elsevier, vol. 318(2), pages 469-485.
    3. Tiniç, Gizem Ozbaygin & Karasan, Oya E. & Kara, Bahar Y. & Campbell, James F. & Ozel, Aysu, 2023. "Exact solution approaches for the minimum total cost traveling salesman problem with multiple drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 81-123.
    4. Cui, Haipeng & Li, Keyu & Jia, Shuai & Meng, Qiang, 2024. "Dynamic collaborative truck-drone delivery with en-route synchronization and random requests," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    5. Zhu, Waiming & Hu, Xiaoxuan & Pei, Jun & Pardalos, Panos M., 2024. "Minimizing the total travel distance for the locker-based drone delivery: A branch-and-cut-based method," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    6. Deng, Menghua & Li, Yuanbo & Ding, Jianpeng & Zhou, Yanlin & Zhang, Lianming, 2024. "Stochastic and robust truck-and-drone routing problems with deadlines: A Benders decomposition approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    7. Wang, Feilong & Li, Hongqi & Xiong, Hanxi, 2025. "Truck–drone routing problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 322(3), pages 854-869.
    8. Dell’Amico, Mauro & Montemanni, Roberto & Novellani, Stefano, 2021. "Algorithms based on branch and bound for the flying sidekick traveling salesman problem," Omega, Elsevier, vol. 104(C).
    9. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    10. Alexander Rave, 2025. "Two-indexed formulation of the traveling salesman problem with multiple drones performing sidekicks and loops," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 47(1), pages 67-104, March.
    11. Morandi, Nicola & Leus, Roel & Matuschke, Jannik & Yaman, Hande, 2023. "The traveling salesman problem with drones: The benefits of retraversing the arcs," Other publications TiSEM 09f54df0-875e-40af-a43d-5, Tilburg University, School of Economics and Management.
    12. Morandi, Nicola & Leus, Roel & Yaman, Hande, 2024. "The orienteering problem with drones," Other publications TiSEM 593f31f0-7b7b-4069-84ca-8, Tilburg University, School of Economics and Management.
    13. Yang, Xin & Cao, Wenjie & Wang, Kai & Yin, Haodong & Wu, Jianjun & Wu, Lingxiao, 2025. "Integrated scheduling of truck and drone fleets for cargo transportation in post-disaster relief: A two-stage stochastic optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).
    14. Luigi Di Puglia Pugliese & Francesca Guerriero & Maria Grazia Scutellá, 2021. "The Last-Mile Delivery Process with Trucks and Drones Under Uncertain Energy Consumption," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 31-67, October.
    15. Chen, Enming & Zhou, Zhongbao & Li, Ruiyang & Chang, Zhongxiang & Shi, Jianmai, 2024. "The multi-fleet delivery problem combined with trucks, tricycles, and drones for last-mile logistics efficiency requirements under multiple budget constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    16. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2024. "Electric van-based robot deliveries with en-route charging," European Journal of Operational Research, Elsevier, vol. 317(3), pages 806-826.
    17. Hu, Yuzhen & Wang, Min & Guo, Xinghai & Lukinykh, Valery F., 2025. "Pre-occurrence location-allocation-configuration of maritime emergency resources considering shipborne unmanned aerial vehicle (UAV)," Omega, Elsevier, vol. 131(C).
    18. Mahmoudinazlou, Sasan & Kwon, Changhyun, 2024. "A hybrid genetic algorithm with type-aware chromosomes for Traveling Salesman Problems with Drone," European Journal of Operational Research, Elsevier, vol. 318(3), pages 719-739.
    19. Xia, Yang & Zeng, Wenjia & Zhang, Canrong & Yang, Hai, 2023. "A branch-and-price-and-cut algorithm for the vehicle routing problem with load-dependent drones," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 80-110.
    20. Tutam, Mahmut & De Koster, René, 2024. "To walk or not to walk? Designing intelligent order picking warehouses with collaborative robots," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:197:y:2025:i:c:s1366554525000882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.