IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v190y2024ics1366554524002874.html
   My bibliography  Save this article

To walk or not to walk? Designing intelligent order picking warehouses with collaborative robots

Author

Listed:
  • Tutam, Mahmut
  • De Koster, René

Abstract

Order picking is a physically demanding, time-consuming, and costly process in most warehouses. To make the process more efficient, recently, ride-on autonomous robotic order pick trucks (collaborative robots or cobots) have been introduced, that assist the order picker. The order picker can ride on the cobot to travel large distances, but when picking, the cobot behaves as a robot and moves autonomously to the next stop location. The question is where the order picker should get on the cobot (step-on location) to ride further. Using traditional low-level order pick trucks, the order picker rides to every stop location and steps on the truck every time immediately after depositing the picked item on the pick pallet or roll cage. Although riding the truck may be faster than walking, stepping off/on the truck is time-consuming and also demanding for order pickers as it puts much pressure on the knee joints. The cobots allow reducing both travel time (compared to walking only) and knee flexion (compared to riding only). We determine the benefits of choosing optimal step-on locations by formulating an optimization model to minimize total time, including a penalty on the number of knee flexes of the order picker. Since the problem is computationally intractable for large-sized problems, we propose a dynamic programming approach which finds the shortest path of subproblems in each aisle. We find that the optimal collaboration strategy will decrease total travel time, as well as knee flexion of the order picker. Based on Monte Carlo simulation, our results indicate time savings up to 27.9% for one-block and 26.5% for two-block warehouses compared to a heuristic from practice. Based on the data and working practice we obtained from a retail warehouse, the optimal collaboration strategy can improve current practice between 14.5% and 24.1%.

Suggested Citation

  • Tutam, Mahmut & De Koster, René, 2024. "To walk or not to walk? Designing intelligent order picking warehouses with collaborative robots," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:transe:v:190:y:2024:i:c:s1366554524002874
    DOI: 10.1016/j.tre.2024.103696
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524002874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103696?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makusee Masae & Christoph H. Glock & Panupong Vichitkunakorn, 2020. "Optimal order picker routing in a conventional warehouse with two blocks and arbitrary starting and ending points of a tour," International Journal of Production Research, Taylor & Francis Journals, vol. 58(17), pages 5337-5358, September.
    2. Žulj, Ivan & Salewski, Hagen & Goeke, Dominik & Schneider, Michael, 2022. "Order batching and batch sequencing in an AMR-assisted picker-to-parts system," European Journal of Operational Research, Elsevier, vol. 298(1), pages 182-201.
    3. M. Çelik & H. Süral, 2016. "Order picking in a parallel-aisle warehouse with turn penalties," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4340-4355, July.
    4. Grosse, E.H. & Glock, C.H. & Neumann, W.P., 2015. "Human Factors in Order Picking System Design: A Content Analysis," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 75150, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Makusee Masae & Christoph H. Glock & Panupong Vichitkunakorn, 2020. "Optimal order picker routing in the chevron warehouse," IISE Transactions, Taylor & Francis Journals, vol. 52(6), pages 665-687, June.
    6. Winkelhaus, Sven & Zhang, Minqi & Grosse, E. H. & Glock, C. H., 2022. "Hybrid order picking: A simulation model of a joint manual and autonomous order picking system," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 131493, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Öztürkoğlu, Ömer & Hoser, Deniz, 2019. "A discrete cross aisle design model for order-picking warehouses," European Journal of Operational Research, Elsevier, vol. 275(2), pages 411-430.
    8. Guo, Xiaolong & Chen, Ran & Du, Shaofu & Yu, Yugang, 2021. "Storage assignment for newly arrived items in forward picking areas with limited open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    9. Hung-Yu Lee & Chase C. Murray, 2019. "Robotics in order picking: evaluating warehouse layouts for pick, place, and transport vehicle routing systems," International Journal of Production Research, Taylor & Francis Journals, vol. 57(18), pages 5821-5841, September.
    10. Maximilian Löffler & Nils Boysen & Michael Schneider, 2022. "Picker Routing in AGV-Assisted Order Picking Systems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 440-462, January.
    11. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    12. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    13. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    14. repec:dar:wpaper:73331 is not listed on IDEAS
    15. Sara Reed & Ann Melissa Campbell & Barrett W. Thomas, 2022. "The Value of Autonomous Vehicles for Last-Mile Deliveries in Urban Environments," Management Science, INFORMS, vol. 68(1), pages 280-299, January.
    16. Scholz, André & Henn, Sebastian & Stuhlmann, Meike & Wäscher, Gerhard, 2016. "A new mathematical programming formulation for the Single-Picker Routing Problem," European Journal of Operational Research, Elsevier, vol. 253(1), pages 68-84.
    17. Srinivas, Sharan & Yu, Shitao, 2022. "Collaborative order picking with multiple pickers and robots: Integrated approach for order batching, sequencing and picker-robot routing," International Journal of Production Economics, Elsevier, vol. 254(C).
    18. Salama, Mohamed R. & Srinivas, Sharan, 2022. "Collaborative truck multi-drone routing and scheduling problem: Package delivery with flexible launch and recovery sites," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    19. Masae, Makusee & Glock, C. H. & Vichitkunakorn, Panupong, 2020. "Optimal Order Picker Routing in a Conventional Warehouse with Two Blocks and Arbitrary Starting and Ending Points of a Tour," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 118923, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    20. H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
    21. Roodbergen, Kees Jan & de Koster, Rene, 2001. "Routing order pickers in a warehouse with a middle aisle," European Journal of Operational Research, Elsevier, vol. 133(1), pages 32-43, August.
    22. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    23. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    24. Roberto Roberti & Mario Ruthmair, 2021. "Exact Methods for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 55(2), pages 315-335, March.
    25. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126185, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    26. van Gils, Teun & Caris, An & Ramaekers, Katrien & Braekers, Kris & de Koster, René B.M., 2019. "Designing efficient order picking systems: The effect of real-life features on the relationship among planning problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 47-73.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & de Koster, René, 2025. "50 years of warehousing research—An operations research perspective," European Journal of Operational Research, Elsevier, vol. 320(3), pages 449-464.
    2. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    3. Saylam, Serhat & Çelik, Melih & Süral, Haldun, 2024. "Arc routing based compact formulations for picker routing in single and two block parallel aisle warehouses," European Journal of Operational Research, Elsevier, vol. 313(1), pages 225-240.
    4. Bock, Stefan & Boysen, Nils, 2025. "Due date-oriented picker routing, an efficient exact solution algorithm, and its application to pick-from-store omnichannel retailing," European Journal of Operational Research, Elsevier, vol. 321(3), pages 775-788.
    5. Bock, Stefan & Bomsdorf, Stefan & Boysen, Nils & Schneider, Michael, 2025. "A survey on the Traveling Salesman Problem and its variants in a warehousing context," European Journal of Operational Research, Elsevier, vol. 322(1), pages 1-14.
    6. Mustapha Haouassi & Yannick Kergosien & Jorge E. Mendoza & Louis-Martin Rousseau, 2022. "The integrated orderline batching, batch scheduling, and picker routing problem with multiple pickers: the benefits of splitting customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 614-645, September.
    7. Laura Lüke & Katrin Heßler & Stefan Irnich, 2024. "The single picker routing problem with scattered storage: modeling and evaluation of routing and storage policies," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 909-951, September.
    8. Laura Korbacher & Katrin Heßler & Stefan Irnich, 2023. "The Single Picker Routing Problem with Scattered Storage: Modeling and Evaluation of Routing and Storage Policies," Working Papers 2302, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    9. Katrin Heßler & Stefan Irnich, 2023. "Exact Solution of the Single Picker Routing Problem with Scattered Storage," Working Papers 2303, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    10. Constantin Wildt & Felix Weidinger & Nils Boysen, 2025. "Picker routing in scattered storage warehouses: an evaluation of solution methods based on TSP transformations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 47(1), pages 35-66, March.
    11. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Lam, H.Y. & Ho, G.T.S. & Mo, Daniel Y. & Tang, Valerie, 2023. "Responsive pick face replenishment strategy for stock allocation to fulfil e-commerce order," International Journal of Production Economics, Elsevier, vol. 264(C).
    13. Maximilian Löffler & Nils Boysen & Michael Schneider, 2022. "Picker Routing in AGV-Assisted Order Picking Systems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 440-462, January.
    14. Maximilian Löffler & Michael Schneider & Ivan Žulj, 2023. "Cost-neutral reduction of infection risk in picker-to-parts warehousing systems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 151-179, March.
    15. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    16. Katrin Heßler & Stefan Irnich, 2024. "Exact Solution of the Single-Picker Routing Problem with Scattered Storage," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1417-1435, December.
    17. Anastasios Gialos & Vasileios Zeimpekis, 2024. "A state-of-the-art classification and review of parameters that affect the design, control, and operating strategies of order-picking systems," Operational Research, Springer, vol. 24(1), pages 1-52, March.
    18. Çelik, Melih & Archetti, Claudia & Süral, Haldun, 2022. "Inventory routing in a warehouse: The storage replenishment routing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1117-1132.
    19. Shandong Mou, 2022. "Integrated Order Picking and Multi-Skilled Picker Scheduling in Omni-Channel Retail Stores," Mathematics, MDPI, vol. 10(9), pages 1-19, April.
    20. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:190:y:2024:i:c:s1366554524002874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.