IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i1p440-462.html
   My bibliography  Save this article

Picker Routing in AGV-Assisted Order Picking Systems

Author

Listed:
  • Maximilian Löffler

    (Deutsche Post Chair – Optimization of Distribution Networks, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany)

  • Nils Boysen

    (Operations Management, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany)

  • Michael Schneider

    (Deutsche Post Chair – Optimization of Distribution Networks, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany)

Abstract

To reduce unproductive picker walking in traditional picker-to-parts warehousing systems, automated guided vehicles (AGVs) are used to support human order pickers. In an AGV-assisted order-picking system, each human order picker is accompanied by an AGV during the order-picking process. AGVs receive the picked items and, once a picking order is complete, autonomously bring the collected items to the shipping area. Meanwhile, a new AGV is requested to meet the picker at the first storage position of the next picking order. Thus, the picker does not have to return to a central depot and continuously picks order after order. This paper addresses both the routing of an AGV-assisted picker through a single-block, parallel-aisle warehouse and the sequencing of incoming orders. We present an exact polynomial time routing algorithm for the case of a given order sequence, which is an extension of the algorithm of Ratliff and Rosenthal [ Ratliff HD, Rosenthal AS (1983) Order-picking in a rectangular warehouse: A solvable case of the traveling salesman problem. Oper. Res. 1(3):507–521], and a heuristic for the case in which order sequencing is part of the problem. In addition, we investigate the use of highly effective traveling salesman problem (TSP) solvers that can be applied after a transformation of both problem types into a standard TSP. The numerical studies address the performance of these methods and study the impact of AGV usage on picker travel: by using AGVs to avoid returns to the depot and by sequencing in (near-) optimal fashion, picker walking can be reduced by about 20% compared with a traditional setting. Sharing AGVs among the picker workforce enables a pooling effect so that, in larger warehouses, only about 1.5 AGVs per picker are required to avoid picker waiting. Summary of Contribution: New technologies, such as automatic guided vehicles (AGVs) are currently considered as options to increase the efficiency of the order-picking process in warehouses, which is responsible for a large part of operational warehousing costs. In addition, picker-routing decisions are more and more often based on algorithmic decision support because of their relevance for decreasing unproductive picker walking time. This paper addresses both aspects and investigates routing algorithms for AGV-assisted order picking in parallel-aisle warehouses. We present a dynamic programming routine with polynomial runtime to solve the problem variant in which the sequence of picking orders is fixed. For the variant in which this sequence is a decision, we show that the problem becomes NP-hard, and we propose a greedy heuristic and investigate the use of state-of-the-art exact and heuristic traveling salesman problem solution methods to address the problem. The numerical studies demonstrate the effectiveness of the algorithms and indicate that AGV assistance promises strong improvements in the order-fulfillment process. Because of the practical relevance of AGV-assisted order picking and the presented algorithmic contributions, we believe that the paper is relevant for practitioners and researchers alike.

Suggested Citation

  • Maximilian Löffler & Nils Boysen & Michael Schneider, 2022. "Picker Routing in AGV-Assisted Order Picking Systems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 440-462, January.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:440-462
    DOI: 10.1287/ijoc.2021.1060
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1060
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
    2. Iris F. A. Vis & Kees Jan Roodbergen, 2009. "Scheduling of Container Storage and Retrieval," Operations Research, INFORMS, vol. 57(2), pages 456-467, April.
    3. Jongens, Kees & Volgenant, Ton, 1985. "The symmetric clustered traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 19(1), pages 68-75, January.
    4. Dominik Goeke & Michael Schneider, 2021. "Modeling Single-Picker Routing Problems in Classical and Modern Warehouses," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 436-451, May.
    5. Roodbergen, Kees Jan & de Koster, Rene, 2001. "Routing order pickers in a warehouse with a middle aisle," European Journal of Operational Research, Elsevier, vol. 133(1), pages 32-43, August.
    6. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    7. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    8. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    9. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    10. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126185, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Hong, Soondo & Johnson, Andrew L. & Peters, Brett A., 2012. "Batch picking in narrow-aisle order picking systems with consideration for picker blocking," European Journal of Operational Research, Elsevier, vol. 221(3), pages 557-570.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    2. Saylam, Serhat & Çelik, Melih & Süral, Haldun, 2024. "Arc routing based compact formulations for picker routing in single and two block parallel aisle warehouses," European Journal of Operational Research, Elsevier, vol. 313(1), pages 225-240.
    3. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    4. Katrin Heßler & Stefan Irnich, 2023. "Exact Solution of the Single Picker Routing Problem with Scattered Storage," Working Papers 2303, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    5. Žulj, Ivan & Salewski, Hagen & Goeke, Dominik & Schneider, Michael, 2022. "Order batching and batch sequencing in an AMR-assisted picker-to-parts system," European Journal of Operational Research, Elsevier, vol. 298(1), pages 182-201.
    6. Briant, Olivier & Cambazard, Hadrien & Cattaruzza, Diego & Catusse, Nicolas & Ladier, Anne-Laure & Ogier, Maxime, 2020. "An efficient and general approach for the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 285(2), pages 497-512.
    7. Mustapha Haouassi & Yannick Kergosien & Jorge E. Mendoza & Louis-Martin Rousseau, 2022. "The integrated orderline batching, batch scheduling, and picker routing problem with multiple pickers: the benefits of splitting customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 614-645, September.
    8. Maximilian Löffler & Michael Schneider & Ivan Žulj, 2023. "Cost-neutral reduction of infection risk in picker-to-parts warehousing systems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 151-179, March.
    9. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    10. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    11. Xie, Lin & Li, Hanyi & Luttmann, Laurin, 2023. "Formulating and solving integrated order batching and routing in multi-depot AGV-assisted mixed-shelves warehouses," European Journal of Operational Research, Elsevier, vol. 307(2), pages 713-730.
    12. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    13. Russell Allgor & Tolga Cezik & Daniel Chen, 2023. "Algorithm for Robotic Picking in Amazon Fulfillment Centers Enables Humans and Robots to Work Together Effectively," Interfaces, INFORMS, vol. 53(4), pages 266-282, July.
    14. Laura Korbacher & Katrin Heßler & Stefan Irnich, 2023. "The Single Picker Routing Problem with Scattered Storage: Modeling and Evaluation of Routing and Storage Policies," Working Papers 2302, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    15. van der Gaast, Jelmer Pier & Weidinger, Felix, 2022. "A deep learning approach for the selection of an order picking system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 530-543.
    16. Arbex Valle, Cristiano & Beasley, John E, 2020. "Order batching using an approximation for the distance travelled by pickers," European Journal of Operational Research, Elsevier, vol. 284(2), pages 460-484.
    17. Silva, Allyson & Roodbergen, Kees Jan & Coelho, Leandro C. & Darvish, Maryam, 2022. "Estimating optimal ABC zone sizes in manual warehouses," International Journal of Production Economics, Elsevier, vol. 252(C).
    18. Glock, Christoph H. & Grosse, Eric H. & Abedinnia, Hamid & Emde, Simon, 2019. "An integrated model to improve ergonomic and economic performance in order picking by rotating pallets," European Journal of Operational Research, Elsevier, vol. 273(2), pages 516-534.
    19. Nilendra Singh Pawar & Subir S. Rao & Gajendra K. Adil, 2024. "Improving Order-Picking Performance in E-Commerce Warehouses through Entropy-Based Hierarchical Scattering," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    20. Sebastian Henn & André Scholz & Meike Stuhlmann & Gerhard Wäscher, 2015. "A New Mathematical Programming Formulation for the Single-Picker Routing Problem in a Single-Block Layout," FEMM Working Papers 150005, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:440-462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.