IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v221y2012i3p557-570.html
   My bibliography  Save this article

Batch picking in narrow-aisle order picking systems with consideration for picker blocking

Author

Listed:
  • Hong, Soondo
  • Johnson, Andrew L.
  • Peters, Brett A.

Abstract

This paper develops strategies to control picker blocking that challenge the traditional assumptions regarding the tradeoffs between wide- and narrow-aisle order picking systems. We propose an integrated batching and sequencing procedure called the indexed batching model (IBM), with the objective of minimizing the total retrieval time (the sum of travel time, pick time and congestion delays). The IBM differs from traditional batching formulations by assigning orders to indexed batches, whereby each batch corresponds to a position in the batch release sequence. We develop a mixed integer programming solution for exact control, and demonstrate a simulated annealing procedure to solve large practical problems. Our results indicate that the proposed approach achieves a 5–15% reduction in the total retrieval time primarily by reducing picker blocking. We conclude that the IBM is particularly effective in narrow-aisle picking systems.

Suggested Citation

  • Hong, Soondo & Johnson, Andrew L. & Peters, Brett A., 2012. "Batch picking in narrow-aisle order picking systems with consideration for picker blocking," European Journal of Operational Research, Elsevier, vol. 221(3), pages 557-570.
  • Handle: RePEc:eee:ejores:v:221:y:2012:i:3:p:557-570
    DOI: 10.1016/j.ejor.2012.03.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712002706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.03.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, C-H. & Liu, S-Y., 1995. "A comparative study of order batching algorithms," Omega, Elsevier, vol. 23(6), pages 691-700, December.
    2. René de Koster & Yeming Gong, 2008. "A polling-based dynamic order picking system for online retailers," Post-Print hal-02312476, HAL.
    3. Min Zhang & Rajan Batta & Rakesh Nagi, 2009. "Modeling of Workflow Congestion and Optimization of Flow Routing in a Manufacturing/Warehouse Facility," Management Science, INFORMS, vol. 55(2), pages 267-280, February.
    4. Robert A. Ruben & F. Robert Jacobs, 1999. "Batch Construction Heuristics and Storage Assignment Strategies for Walk/Ride and Pick Systems," Management Science, INFORMS, vol. 45(4), pages 575-596, April.
    5. Soondo Hong & Andrew Johnson & Brett Peters, 2012. "Large-scale order batching in parallel-aisle picking systems," IISE Transactions, Taylor & Francis Journals, vol. 44(2), pages 88-106.
    6. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    7. H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
    8. Pratik Parikh & Russell Meller, 2010. "A note on worker blocking in narrow-aisle order picking systems when pick time is non-deterministic," IISE Transactions, Taylor & Francis Journals, vol. 42(6), pages 392-404.
    9. John J. Bartholdi & Donald D. Eisenstein, 1996. "A Production Line that Balances Itself," Operations Research, INFORMS, vol. 44(1), pages 21-34, February.
    10. R de Koster & M Yu, 2008. "Minimizing makespan and throughput times at Aalsmeer flower auction," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1182-1190, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    2. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    3. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    4. Hong, Soondo & Kim, Youngjoo, 2017. "A route-selecting order batching model with the S-shape routes in a parallel-aisle order picking system," European Journal of Operational Research, Elsevier, vol. 257(1), pages 185-196.
    5. de Koster, M.B.M. & Le-Duc, T. & Roodbergen, K.J., 2006. "Design and Control of Warehouse Order Picking: a literature review," ERIM Report Series Research in Management ERS-2006-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    7. Matusiak, M. & de Koster, M.B.M. & Saarinen, J., 2015. "Data-driven warehouse optimization," ERIM Report Series Research in Management ERS-2015-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Matusiak, Marek & de Koster, René & Kroon, Leo & Saarinen, Jari, 2014. "A fast simulated annealing method for batching precedence-constrained customer orders in a warehouse," European Journal of Operational Research, Elsevier, vol. 236(3), pages 968-977.
    9. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    10. Sören Koch & Gerhard Wäscher, 2016. "A grouping genetic algorithm for the Order Batching Problem in distribution warehouses," Journal of Business Economics, Springer, vol. 86(1), pages 131-153, January.
    11. Sören Koch & Gerhard Wäscher, 2011. "A Grouping Genetic Algorithm for the Order Batching Problem in Distribution Warehouses," FEMM Working Papers 110026, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    12. Fangyu Chen & Yongchang Wei & Hongwei Wang, 2018. "A heuristic based batching and assigning method for online customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 640-685, December.
    13. Matusiak, Marek & de Koster, René & Saarinen, Jari, 2017. "Utilizing individual picker skills to improve order batching in a warehouse," European Journal of Operational Research, Elsevier, vol. 263(3), pages 888-899.
    14. Fangyu Chen & Hongwei Wang & Yong Xie & Chao Qi, 2016. "An ACO-based online routing method for multiple order pickers with congestion consideration in warehouse," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 389-408, April.
    15. Hong, Soondo & Johnson, Andrew L. & Peters, Brett A., 2015. "Quantifying picker blocking in a bucket brigade order picking system," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 862-873.
    16. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    17. A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
    18. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    19. Pan, Jason Chao-Hsien & Shih, Po-Hsun & Wu, Ming-Hung, 2015. "Order batching in a pick-and-pass warehousing system with group genetic algorithm," Omega, Elsevier, vol. 57(PB), pages 238-248.
    20. Yu, M. & de Koster, M.B.M., 2007. "Performance Approximation and Design of Pick-and-Pass Order Picking Systems," ERIM Report Series Research in Management ERS-2007-082-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:221:y:2012:i:3:p:557-570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.