IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v197y2025ics1366554525001231.html
   My bibliography  Save this article

Collaborative Human–Robot Teaming for Dynamic Order Picking: Interventionist strategies for improving warehouse intralogistics operations

Author

Listed:
  • Yu, Shitao
  • Srinivas, Sharan

Abstract

Order picking, a labor-intensive and costly aspect of picker-to-parts warehouse systems, faces challenges such as rising worker injuries, faster delivery expectations, and dynamic order arrivals. Collaborative automation, particularly human-autonomous mobile robot (AMR) collaboration, offers a promising solution, but limited research addresses its role in managing dynamic orders. This study introduces the Collaborative Human–Robot Dynamic Order Picking Problem (CHR-DOPP), where workers perform pick-and-place tasks while AMRs handle transportation. We propose an interventionist strategy to manage dynamic orders by allowing ongoing AMR and worker pick cycles to be updated with new requests. Two interventionist algorithms are proposed: a reactive strategy that dynamically assigns new orders based on AMR availability and proximity, and a conditional strategy that selectively integrates new requests to minimize disruption to ongoing pick cycles. Their performance is benchmarked against traditional human-only picking with intervention and non-interventionist collaborative strategies. The system performance is assessed using three key measures, namely, average order completion time (AOCT), average worker travel distance (AWTD) and average total tardiness (ATT). Extensive numerical experiments are conducted to assess the performance of the proposed interventionist algorithms, including impact of routing strategy, AMR cart capacity, number of warehouse zones, and nature of order arrivals. Our results show that the proposed strategies outperform the traditional human-only picking strategy across all three metrics (AOCT, ATT, and AWTD), while achieving significantly better AOCT and ATT compared to a collaborative system without interventions, despite an increase in AWTD. Finally, numerous managerial insights for different warehouse types are provided based on our findings.

Suggested Citation

  • Yu, Shitao & Srinivas, Sharan, 2025. "Collaborative Human–Robot Teaming for Dynamic Order Picking: Interventionist strategies for improving warehouse intralogistics operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:transe:v:197:y:2025:i:c:s1366554525001231
    DOI: 10.1016/j.tre.2025.104082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525001231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maximilian Löffler & Nils Boysen & Michael Schneider, 2023. "Human-Robot Cooperation: Coordinating Autonomous Mobile Robots and Human Order Pickers," Transportation Science, INFORMS, vol. 57(4), pages 979-998, July.
    2. Zhang, Minqi & Grosse, Eric H. & Glock, Christoph H., 2023. "Ergonomic and economic evaluation of a collaborative hybrid order picking system," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136174, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Winkelhaus, Sven & Zhang, Minqi & Grosse, E. H. & Glock, C. H., 2022. "Hybrid order picking: A simulation model of a joint manual and autonomous order picking system," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 131493, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Tutam, Mahmut & De Koster, René, 2024. "To walk or not to walk? Designing intelligent order picking warehouses with collaborative robots," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    5. Henn, Sebastian & Wäscher, Gerhard, 2012. "Tabu search heuristics for the order batching problem in manual order picking systems," European Journal of Operational Research, Elsevier, vol. 222(3), pages 484-494.
    6. Henokh Yernias Fibrianto & Soondo Hong, 2019. "Dynamic order batching in bucket brigade order picking systems with consecutive batch windows and non-identical pickers," International Journal of Production Research, Taylor & Francis Journals, vol. 57(20), pages 6552-6568, October.
    7. René de Koster & Yeming Gong, 2008. "A polling-based dynamic order picking system for online retailers," Post-Print hal-02312476, HAL.
    8. Giannikas, Vaggelis & Lu, Wenrong & Robertson, Brian & McFarlane, Duncan, 2017. "An interventionist strategy for warehouse order picking: Evidence from two case studies," International Journal of Production Economics, Elsevier, vol. 189(C), pages 63-76.
    9. Hung-Yu Lee & Chase C. Murray, 2019. "Robotics in order picking: evaluating warehouse layouts for pick, place, and transport vehicle routing systems," International Journal of Production Research, Taylor & Francis Journals, vol. 57(18), pages 5821-5841, September.
    10. Huiwen Bai & Peng Yang & Zhizhen Qin & Mingyao Qi & Wangqi Xiong, 2025. "Order sequencing, tote scheduling, and robot routing optimization in multi-tote storage and retrieval autonomous mobile robot systems," International Journal of Production Research, Taylor & Francis Journals, vol. 63(1), pages 314-341, January.
    11. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    12. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    13. Bukchin, Yossi & Khmelnitsky, Eugene & Yakuel, Pini, 2012. "Optimizing a dynamic order-picking process," European Journal of Operational Research, Elsevier, vol. 219(2), pages 335-346.
    14. Sharan Srinivas & Suchithra Rajendran & Hans Ziegler, 2021. "An Overview of Decisions, Performance and Analytics in Supply Chain Management," International Series in Operations Research & Management Science, in: Sharan Srinivas & Suchithra Rajendran & Hans Ziegler (ed.), Supply Chain Management in Manufacturing and Service Systems, pages 1-17, Springer.
    15. Srinivas, Sharan & Yu, Shitao, 2022. "Collaborative order picking with multiple pickers and robots: Integrated approach for order batching, sequencing and picker-robot routing," International Journal of Production Economics, Elsevier, vol. 254(C).
    16. H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
    17. Yu, Mengfei & de Koster, René B.M., 2009. "The impact of order batching and picking area zoning on order picking system performance," European Journal of Operational Research, Elsevier, vol. 198(2), pages 480-490, October.
    18. Zhang, Minqi & Grosse, Eric H. & Glock, Christoph H., 2023. "Ergonomic and economic evaluation of a collaborative hybrid order picking system," International Journal of Production Economics, Elsevier, vol. 258(C).
    19. Fragapane, Giuseppe & de Koster, René & Sgarbossa, Fabio & Strandhagen, Jan Ola, 2021. "Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 294(2), pages 405-426.
    20. Lu, Wenrong & McFarlane, Duncan & Giannikas, Vaggelis & Zhang, Quan, 2016. "An algorithm for dynamic order-picking in warehouse operations," European Journal of Operational Research, Elsevier, vol. 248(1), pages 107-122.
    21. Schleyer, Marc & Gue, Kevin, 2012. "Throughput time distribution analysis for a one-block warehouse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 652-666.
    22. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    23. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126185, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anastasios Gialos & Vasileios Zeimpekis, 2024. "A state-of-the-art classification and review of parameters that affect the design, control, and operating strategies of order-picking systems," Operational Research, Springer, vol. 24(1), pages 1-52, March.
    2. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    3. Giannikas, Vaggelis & Lu, Wenrong & Robertson, Brian & McFarlane, Duncan, 2017. "An interventionist strategy for warehouse order picking: Evidence from two case studies," International Journal of Production Economics, Elsevier, vol. 189(C), pages 63-76.
    4. Tutam, Mahmut & De Koster, René, 2024. "To walk or not to walk? Designing intelligent order picking warehouses with collaborative robots," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    5. Pardo, Eduardo G. & Gil-Borrás, Sergio & Alonso-Ayuso, Antonio & Duarte, Abraham, 2024. "Order batching problems: Taxonomy and literature review," European Journal of Operational Research, Elsevier, vol. 313(1), pages 1-24.
    6. Bock, Stefan & Bomsdorf, Stefan & Boysen, Nils & Schneider, Michael, 2025. "A survey on the Traveling Salesman Problem and its variants in a warehousing context," European Journal of Operational Research, Elsevier, vol. 322(1), pages 1-14.
    7. Boysen, Nils & de Koster, René, 2025. "50 years of warehousing research—An operations research perspective," European Journal of Operational Research, Elsevier, vol. 320(3), pages 449-464.
    8. Žulj, Ivan & Salewski, Hagen & Goeke, Dominik & Schneider, Michael, 2022. "Order batching and batch sequencing in an AMR-assisted picker-to-parts system," European Journal of Operational Research, Elsevier, vol. 298(1), pages 182-201.
    9. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    10. Maximilian Löffler & Michael Schneider & Ivan Žulj, 2023. "Cost-neutral reduction of infection risk in picker-to-parts warehousing systems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 151-179, March.
    11. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    13. Xie, Lin & Li, Hanyi & Luttmann, Laurin, 2023. "Formulating and solving integrated order batching and routing in multi-depot AGV-assisted mixed-shelves warehouses," European Journal of Operational Research, Elsevier, vol. 307(2), pages 713-730.
    14. Fangyu Chen & Yongchang Wei & Hongwei Wang, 2018. "A heuristic based batching and assigning method for online customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 640-685, December.
    15. Maximilian Löffler & Nils Boysen & Michael Schneider, 2022. "Picker Routing in AGV-Assisted Order Picking Systems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 440-462, January.
    16. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    17. Gámez Albán, Harol Mauricio & Cornelissens, Trijntje & Sörensen, Kenneth, 2024. "A new policy for scattered storage assignment to minimize picking travel distances," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1006-1020.
    18. Constantin Wildt & Felix Weidinger & Nils Boysen, 2025. "Picker routing in scattered storage warehouses: an evaluation of solution methods based on TSP transformations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 47(1), pages 35-66, March.
    19. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    20. Yang, Xiying & Hua, Guowei & Zhang, Li & Cheng, Tai Chiu Edwin & Choi, Tsan-Ming, 2025. "Joint optimization of order- and rack-scheduling in KIVA picking systems," Omega, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:197:y:2025:i:c:s1366554525001231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.