IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i20p4305-d1260645.html
   My bibliography  Save this article

Solving the Flying Sidekick Traveling Salesman Problem by a Simulated Annealing Heuristic

Author

Listed:
  • Vincent F. Yu

    (Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
    Center for Cyber-Physical System Innovation, National Taiwan University of Science and Technology, Taipei 106335, Taiwan)

  • Shih-Wei Lin

    (Department of Information Management, Chang Gung University, Taoyuan 33302, Taiwan
    Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei 243303, Taiwan
    Department of Emergency Medicine, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan)

  • Panca Jodiawan

    (Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106335, Taiwan)

  • Yu-Chi Lai

    (Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan)

Abstract

This study investigates the flying sidekick traveling salesman problem (FSTSP), in which a truck and an unmanned aerial vehicle work together to make deliveries. This study develops a revised mixed-integer linear programming (MILP) model for the FSTSP. The revised MILP model performs better than the existing model. Due to the FSTSP’s high complexity, we propose an effective heuristic based on simulated annealing (SA) to solve the problem. The novelty of the proposed SA heuristic lies in the new solution representation, which not only determines the visiting sequence of customers but also the service type of customers and rendezvous positions. Another feature of the proposed SA is a new operator specifically designed for the FSTSP. To evaluate the performance of the proposed SA heuristic, we conduct a comprehensive computational study where we fine-tune the parameters of the SA heuristic and compare the performance of the SA heuristic with several state-of-the-art algorithms including hybrid genetic algorithm (HGA) and iterated local search (ILS) in solving existing FSTSP benchmark instances. The results indicate that the proposed SA heuristic outperforms ILS and is statistically competitive with HGA. It obtains best-known solutions for all small FSTSP instances and 29 best-known solutions for the 60 large FSTSP instances, including 20 new best-known solutions.

Suggested Citation

  • Vincent F. Yu & Shih-Wei Lin & Panca Jodiawan & Yu-Chi Lai, 2023. "Solving the Flying Sidekick Traveling Salesman Problem by a Simulated Annealing Heuristic," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4305-:d:1260645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/20/4305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/20/4305/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quang Minh Ha & Yves Deville & Quang Dung Pham & Minh Hoàng Hà, 2020. "A hybrid genetic algorithm for the traveling salesman problem with drone," Journal of Heuristics, Springer, vol. 26(2), pages 219-247, April.
    2. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    3. Oruc, Buse Eylul & Kara, Bahar Yetis, 2018. "Post-disaster assessment routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 76-102.
    4. Matai, Rajesh, 2015. "Solving multi objective facility layout problem by modified simulated annealing," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 302-311.
    5. Maria Elena Bruni & Sara Khodaparasti, 2022. "A Variable Neighborhood Descent Matheuristic for the Drone Routing Problem with Beehives Sharing," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    6. Wang, Zheng & Sheu, Jiuh-Biing, 2019. "Vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 350-364.
    7. Pérez-Sánchez, Modesto & Sánchez-Romero, Francisco Javier & López-Jiménez, P. Amparo & Ramos, Helena M., 2018. "PATs selection towards sustainability in irrigation networks: Simulated annealing as a water management tool," Renewable Energy, Elsevier, vol. 116(PA), pages 234-249.
    8. Jeong, Ho Young & Song, Byung Duk & Lee, Seokcheon, 2019. "Truck-drone hybrid delivery routing: Payload-energy dependency and No-Fly zones," International Journal of Production Economics, Elsevier, vol. 214(C), pages 220-233.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiniç, Gizem Ozbaygin & Karasan, Oya E. & Kara, Bahar Y. & Campbell, James F. & Ozel, Aysu, 2023. "Exact solution approaches for the minimum total cost traveling salesman problem with multiple drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 81-123.
    2. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    3. Jiang, Jie & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A multi-visit flexible-docking vehicle routing problem with drones for simultaneous pickup and delivery services," European Journal of Operational Research, Elsevier, vol. 312(1), pages 125-137.
    4. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    5. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    6. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    7. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
    8. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing," Annals of Operations Research, Springer, vol. 327(1), pages 89-127, August.
    9. Ren, Xuan & Froger, Aurélien & Jabali, Ola & Liang, Gongqian, 2024. "A competitive heuristic algorithm for vehicle routing problems with drones," European Journal of Operational Research, Elsevier, vol. 318(2), pages 469-485.
    10. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    11. Shi, Yong & Yang, Junhao & Han, Qian & Song, Hao & Guo, Haixiang, 2024. "Optimal decision-making of post-disaster emergency material scheduling based on helicopter–truck–drone collaboration," Omega, Elsevier, vol. 127(C).
    12. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2020. "Two-echelon vehicle routing problem with time windows and mobile satellites," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 179-201.
    13. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    14. Yin, Yunqiang & Yang, Yongjian & Yu, Yugang & Wang, Dujuan & Cheng, T.C.E., 2023. "Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    15. Xia, Yang & Zeng, Wenjia & Zhang, Canrong & Yang, Hai, 2023. "A branch-and-price-and-cut algorithm for the vehicle routing problem with load-dependent drones," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 80-110.
    16. Giuseppe Aiello & Rosalinda Inguanta & Giusj D’Angelo & Mario Venticinque, 2021. "Energy Consumption Model of Aerial Urban Logistic Infrastructures," Energies, MDPI, vol. 14(18), pages 1-19, September.
    17. Roberto Roberti & Mario Ruthmair, 2021. "Exact Methods for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 55(2), pages 315-335, March.
    18. Salama, Mohamed R. & Srinivas, Sharan, 2022. "Collaborative truck multi-drone routing and scheduling problem: Package delivery with flexible launch and recovery sites," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    19. Meng, Shanshan & Guo, Xiuping & Li, Dong & Liu, Guoquan, 2023. "The multi-visit drone routing problem for pickup and delivery services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    20. Tamke, Felix & Buscher, Udo, 2021. "A branch-and-cut algorithm for the vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 174-203.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4305-:d:1260645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.