IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v181y2024ics1366554523003022.html
   My bibliography  Save this article

Towards sustainable UAV operations: Balancing economic optimization with environmental and social considerations in path planning

Author

Listed:
  • Hu, Zhangchen
  • Chen, Heng
  • Lyons, Eric
  • Solak, Senay
  • Zink, Michael

Abstract

Unmanned Aerial Vehicles (UAVs), i.e., drones, are expected to be widely used in various applications, such as parcel delivery and passenger transport, with the benefits of mitigating traffic congestion and reducing carbon emissions. In this paper, we study a UAV path planning problem under uncertain weather conditions, and design a data-driven dynamic decision support system for multiple types of UAVs. To this end, we categorize all relevant costs into three types, namely, economic, environmental, and social costs, and formulate a nonlinear two-stage stochastic programming model to establish optimal paths for UAV missions under weather uncertainty. We then discretize the nonlinear model and propose a tight linear approximation for the discretized problem to allow for a near real-time implementation. To quantify weather uncertainty, we propose a weather scenario generation algorithm to map ensemble-based weather forecast information to airspace blockage maps. With comprehensive computational studies through simulations, we show that our proposed stochastic approach can lower operating costs by an average of around 6%, where the savings increase as weather conditions become more severe and complex. We also find that, for missions operated by small UAVs, it is not sufficient to determine a path solely based on economic cost minimization, but it should rather be through total cost minimization, which involves environmental and social costs. Considering only the economic cost in the optimization may lead to much higher non-economic costs. However, for missions operated by large UAVs, it is sufficient to determine paths through economic cost optimization, as including environmental and social costs in the optimization process does not result in solutions that are much different from those obtained by considering only the economic costs. For both small and large UAVs, a path established solely through environmental or social cost minimization may not be economically sustainable, as doing so would imply very high economic costs.

Suggested Citation

  • Hu, Zhangchen & Chen, Heng & Lyons, Eric & Solak, Senay & Zink, Michael, 2024. "Towards sustainable UAV operations: Balancing economic optimization with environmental and social considerations in path planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:transe:v:181:y:2024:i:c:s1366554523003022
    DOI: 10.1016/j.tre.2023.103314
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523003022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:181:y:2024:i:c:s1366554523003022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.