IDEAS home Printed from https://ideas.repec.org/r/eee/jbfina/v14y1990i2-3p399-421.html
   My bibliography  Save this item

Volatility forecasting without data-snooping

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Taufiq Choudhry & Hao Wu, 2008. "Forecasting ability of GARCH vs Kalman filter method: evidence from daily UK time-varying beta," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 670-689.
  2. Lux, Thomas & Kaizoji, Taisei, 2007. "Forecasting volatility and volume in the Tokyo Stock Market: Long memory, fractality and regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1808-1843, June.
  3. repec:ris:utmsje:0228 is not listed on IDEAS
  4. repec:ris:utmsje:0230 is not listed on IDEAS
  5. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.
  6. Lux, Thomas & Kaizoji, Taisei, 2004. "Forecasting volatility and volume in the Tokyo stock market: The advantage of long memory models," Economics Working Papers 2004-05, Christian-Albrechts-University of Kiel, Department of Economics.
  7. Dimson, Elroy & Marsh, Paul, 1997. "Stress tests of capital requirements," Journal of Banking & Finance, Elsevier, vol. 21(11-12), pages 1515-1546, December.
  8. Matei, Marius, 2010. "Risk analysis in the evaluation of the international investment opportunities. Advances in modelling and forecasting volatility for risk assessment purposes," Working Papers of Institute for Economic Forecasting 100201, Institute for Economic Forecasting.
  9. repec:ris:utmsje:0229 is not listed on IDEAS
  10. Mircea ASANDULUI, 2012. "A Multi-Horizon Comparison Of Volatility Forecasts: An Application To Stock Options Traded At Euronext Exchange Amsterdam," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 10, pages 179-190, December.
  11. Ezzat, Hassan, 2012. "The Application of GARCH and EGARCH in Modeling the Volatility of Daily Stock Returns During Massive Shocks: The Empirical Case of Egypt," MPRA Paper 50530, University Library of Munich, Germany.
  12. Ercan Balaban & Asli Bayar & Robert Faff, 2006. "Forecasting stock market volatility: Further international evidence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(2), pages 171-188.
  13. Eugenie Hol & Siem Jan Koopman, 2000. "Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility," Tinbergen Institute Discussion Papers 00-104/4, Tinbergen Institute.
  14. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
  15. Brooks, C. & Clare, A. D. & Persand, G., 2000. "A word of caution on calculating market-based minimum capital risk requirements," Journal of Banking & Finance, Elsevier, vol. 24(10), pages 1557-1574, October.
  16. Ezzat, Hassan, 2012. "The Application of GARCH Methods in Modeling Volatility Using Sector Indices from the Egyptian Exchange," MPRA Paper 51584, University Library of Munich, Germany.
  17. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
  18. Manh Ha Nguyen & Olivier Darné, 2018. "Forecasting and risk management in the Vietnam Stock Exchange," Working Papers halshs-01679456, HAL.
  19. Twm Evans & David McMillan, 2007. "Volatility forecasts: the role of asymmetric and long-memory dynamics and regional evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 17(17), pages 1421-1430.
  20. David Walsh & Glenn Yu-Gen Tsou, 1998. "Forecasting index volatility: sampling interval and non-trading effects," Applied Financial Economics, Taylor & Francis Journals, vol. 8(5), pages 477-485.
  21. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
  22. Taufiq Choudhry & Hao Wu, 2009. "Forecasting the weekly time-varying beta of UK firms: GARCH models vs. Kalman filter method," The European Journal of Finance, Taylor & Francis Journals, vol. 15(4), pages 437-444.
  23. Shiyi Chen & Wolfgang K. Härdle & Kiho Jeong, 2010. "Forecasting volatility with support vector machine-based GARCH model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 406-433.
  24. Bley, Jorg, 2011. "Are GCC stock markets predictable?," Emerging Markets Review, Elsevier, vol. 12(3), pages 217-237, September.
  25. Gita Persand & Chris Brooks, 2003. "Volatility forecasting for risk management," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 1-22.
  26. repec:dau:papers:123456789/2138 is not listed on IDEAS
  27. repec:eee:reveco:v:53:y:2018:i:c:p:168-184 is not listed on IDEAS
  28. Frimpong, Joseph Magnus & Oteng-Abayie, Eric Fosu, 2006. "Modelling and Forecasting Volatility of Returns on the Ghana Stock Exchange Using GARCH Models," MPRA Paper 593, University Library of Munich, Germany, revised 07 Oct 2006.
IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.