IDEAS home Printed from https://ideas.repec.org/r/eee/intfor/v38y2022i4p1346-1364.html
   My bibliography  Save this item

M5 accuracy competition: Results, findings, and conclusions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Nasios, Ioannis & Vogklis, Konstantinos, 2022. "Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1448-1459.
  2. Girolimetto, Daniele & Athanasopoulos, George & Di Fonzo, Tommaso & Hyndman, Rob J., 2024. "Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1134-1151.
  3. Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
  4. Genov, Evgenii & Cauwer, Cedric De & Kriekinge, Gilles Van & Coosemans, Thierry & Messagie, Maarten, 2024. "Forecasting flexibility of charging of electric vehicles: Tree and cluster-based methods," Applied Energy, Elsevier, vol. 353(PA).
  5. Nils Hinrichs & Tobias Roeschl & Pia Lanmueller & Felix Balzer & Carsten Eickhoff & Benjamin O’Brien & Volkmar Falk & Alexander Meyer, 2024. "Short-term vital parameter forecasting in the intensive care unit: A benchmark study leveraging data from patients after cardiothoracic surgery," PLOS Digital Health, Public Library of Science, vol. 3(9), pages 1-18, September.
  6. Sprangers, Olivier & Wadman, Wander & Schelter, Sebastian & de Rijke, Maarten, 2024. "Hierarchical forecasting at scale," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1689-1700.
  7. Jeon, Yunho & Seong, Sihyeon, 2022. "Robust recurrent network model for intermittent time-series forecasting," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1415-1425.
  8. Daniele Girolimetto & Tommaso Di Fonzo, 2024. "Point and probabilistic forecast reconciliation for general linearly constrained multiple time series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(2), pages 581-607, April.
  9. Fildes, Robert & Kolassa, Stephan & Ma, Shaohui, 2022. "Post-script—Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1319-1324.
  10. Andrea Kolková & Petr Rozehnal, 2022. "Hybrid demand forecasting models: pre-pandemic and pandemic use studies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(3), pages 699-725, September.
  11. Tuominen, Jalmari & Pulkkinen, Eetu & Peltonen, Jaakko & Kanniainen, Juho & Oksala, Niku & Palomäki, Ari & Roine, Antti, 2024. "Forecasting emergency department occupancy with advanced machine learning models and multivariable input," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1410-1420.
  12. Konstantinos Oikonomou & Dimitris Damigos, 2025. "Short term forecasting of base metals prices using a LightGBM and a LightGBM - ARIMA ensemble," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 38(1), pages 37-49, March.
  13. Kafa, Nadine & Babai, M. Zied & Klibi, Walid, 2025. "Forecasting mail flow: A hierarchical approach for enhanced societal wellbeing," International Journal of Forecasting, Elsevier, vol. 41(1), pages 51-65.
  14. Jonas Hanetho, 2023. "Deep Policy Gradient Methods in Commodity Markets," Papers 2308.01910, arXiv.org.
  15. Marco Zanotti, 2025. "Do global forecasting models require frequent retraining?," Working Papers 551, University of Milano-Bicocca, Department of Economics.
  16. van der Haar, Joost F. & Wellens, Arnoud P. & Boute, Robert N. & Basten, Rob J.I., 2024. "Supervised learning for integrated forecasting and inventory control," European Journal of Operational Research, Elsevier, vol. 319(2), pages 573-586.
  17. Rombouts, Jeroen & Ternes, Marie & Wilms, Ines, 2025. "Cross-temporal forecast reconciliation at digital platforms with machine learning," International Journal of Forecasting, Elsevier, vol. 41(1), pages 321-344.
  18. Yashon O. Ouma & Ditiro B. Moalafhi & George Anderson & Boipuso Nkwae & Phillimon Odirile & Bhagabat P. Parida & Jiaguo Qi, 2022. "Dam Water Level Prediction Using Vector AutoRegression, Random Forest Regression and MLP-ANN Models Based on Land-Use and Climate Factors," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
  19. Pierre Dodin & Jingyi Xiao & Yossiri Adulyasak & Neda Etebari Alamdari & Lea Gauthier & Philippe Grangier & Paul Lemaitre & William L. Hamilton, 2023. "Bombardier Aftermarket Demand Forecast with Machine Learning," Interfaces, INFORMS, vol. 53(6), pages 425-445, November.
  20. Schmidt, Felix G. & Pibernik, Richard, 2025. "Data-driven inventory control for large product portfolios: A practical application of prescriptive analytics," European Journal of Operational Research, Elsevier, vol. 322(1), pages 254-269.
  21. Paolo Libenzio Brignoli & Alessandro Varacca & Cornelis Gardebroek & Paolo Sckokai, 2024. "Machine learning to predict grains futures prices," Agricultural Economics, International Association of Agricultural Economists, vol. 55(3), pages 479-497, May.
  22. Stephanie R. Clark & Dan Pagendam & Louise Ryan, 2022. "Forecasting Multiple Groundwater Time Series with Local and Global Deep Learning Networks," IJERPH, MDPI, vol. 19(9), pages 1-31, April.
  23. Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
  24. Zhang, Bohan & Panagiotelis, Anastasios & Kang, Yanfei, 2024. "Discrete forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 318(1), pages 143-153.
  25. Paul Goodwin & Jim Hoover & Spyros Makridakis & Fotios Petropoulos & Len Tashman, 2023. "Business forecasting methods: Impressive advances, lagging implementation," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-12, December.
  26. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
  27. Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
  28. Guillaume Chevalier & Guillaume Coqueret & Thomas Raffinot, 2022. "Supervised portfolios," Post-Print hal-04144588, HAL.
  29. Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
  30. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
  31. Cerqueira, Vitor & Torgo, Luis & Bontempi, Gianluca, 2024. "Instance-based meta-learning for conditionally dependent univariate multi-step forecasting," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1507-1520.
  32. Ma, Shaohui & Fildes, Robert, 2022. "The performance of the global bottom-up approach in the M5 accuracy competition: A robustness check," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1492-1499.
  33. Konstantinos-Leonidas Bisdoulis, 2024. "Assets Forecasting with Feature Engineering and Transformation Methods for LightGBM," Papers 2501.07580, arXiv.org.
  34. Fu, Tong & Huang, Dasen & Feng, Lingbing & Tang, Xiaoping, 2024. "More is better? The impact of predictor choice on the INE oil futures volatility forecasting," Energy Economics, Elsevier, vol. 134(C).
  35. Xu Gong & Mengjie Li & Keqin Guan & Chuanwang Sun, 2023. "Climate change attention and carbon futures return prediction," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1261-1288, September.
  36. Long, Xueying & Bui, Quang & Oktavian, Grady & Schmidt, Daniel F. & Bergmeir, Christoph & Godahewa, Rakshitha & Lee, Seong Per & Zhao, Kaifeng & Condylis, Paul, 2025. "Scalable probabilistic forecasting in retail with gradient boosted trees: A practitioner’s approach," International Journal of Production Economics, Elsevier, vol. 279(C).
  37. Feng, Lingbing & Rao, Haicheng & Lucey, Brian & Zhu, Yiying, 2024. "Volatility forecasting on China's oil futures: New evidence from interpretable ensemble boosting trees," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1595-1615.
  38. Schlaich, Tim & Hoberg, Kai, 2024. "When is the next order? Nowcasting channel inventories with Point-of-Sales data to predict the timing of retail orders," European Journal of Operational Research, Elsevier, vol. 315(1), pages 35-49.
  39. Yannik Hahn & Tristan Langer & Richard Meyes & Tobias Meisen, 2023. "Time Series Dataset Survey for Forecasting with Deep Learning," Forecasting, MDPI, vol. 5(1), pages 1-21, March.
  40. Ye, Lili & Xie, Naiming & Boylan, John E. & Shang, Zhongju, 2024. "Forecasting seasonal demand for retail: A Fourier time-varying grey model," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1467-1485.
  41. Alan Dasilva & Helton Saulo & Roberto Vila & Jose A. Fiorucci & Suvra Pal, 2024. "Parametric quantile autoregressive moving average models with exogenous terms," Statistical Papers, Springer, vol. 65(3), pages 1613-1643, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.