IDEAS home Printed from https://ideas.repec.org/p/mib/wpaper/553.html
   My bibliography  Save this paper

On the stability of global forecasting models

Author

Listed:
  • Marco Zanotti

Abstract

Forecast stability, that is the consistency of predictions over time, is essential in business settings where sudden shifts in forecasts can disrupt planning and erode trust in predictive systems. Despite its importance, stability is often overlooked in favor of accuracy, particularly in global forecasting models. In this study, we evaluate the stability of point and probabilistic forecasts across different retraining frequencies and ensemble strategies using two large retail datasets (M5 and VN1). To do this, we introduce a new metric for probabilistic stability (MQC) and analyze ten different global models and four ensemble configurations. The results show that less frequent retraining not only preserves but often improves forecast stability, while ensembles, especially those combining diverse pool of models, further enhance consistency without sacrificing accuracy. These findings challenge the need for continuous retraining and highlight ensemble diversity as a key factor in reducing forecast stability. The study promotes a shift toward stability-aware forecasting practices, offering practical guidelines for building more robust and sustainable prediction systems.

Suggested Citation

  • Marco Zanotti, 2025. "On the stability of global forecasting models," Working Papers 553, University of Milano-Bicocca, Department of Economics.
  • Handle: RePEc:mib:wpaper:553
    as

    Download full text from publisher

    File URL: http://repec.dems.unimib.it/repec/pdf/mibwpaper553.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Time series; Demand forecasting; Forecasting competitions; Cross-learning; Global models; Forecast stability; Vertical stability; Machine learning; Deep learning; Conformal predictions.;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mib:wpaper:553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Matteo Pelagatti (email available below). General contact details of provider: https://edirc.repec.org/data/dpmibit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.