IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v66y2015i2p299-307.html
   My bibliography  Save this article

On the identification of sales forecasting models in the presence of promotions

Author

Listed:
  • Juan R Trapero

    (Universidad de Castilla-La Mancha, Ciudad Real, Spain)

  • Nikolaos Kourentzes

    (Lancaster University, Lancaster, UK)

  • Robert Fildes

    (Lancaster University, Lancaster, UK)

Abstract

Shorter product life cycles and aggressive marketing, among other factors, have increased the complexity of sales forecasting. Forecasts are often produced using a Forecasting Support System that integrates univariate statistical forecasting with managerial judgment. Forecasting sales under promotional activity is one of the main reasons to use expert judgment. Alternatively, one can replace expert adjustments by regression models whose exogenous inputs are promotion features (price, display, etc). However, these regression models may have large dimensionality as well as multicollinearity issues. We propose a novel promotional model that overcomes these limitations. It combines Principal Component Analysis to reduce the dimensionality of the problem and automatically identifies the demand dynamics. For items with limited history, the proposed model is capable of providing promotional forecasts by selectively pooling information across established products. The performance of the model is compared against forecasts provided by experts and statistical benchmarks, on weekly data; outperforming both substantially.

Suggested Citation

  • Juan R Trapero & Nikolaos Kourentzes & Robert Fildes, 2015. "On the identification of sales forecasting models in the presence of promotions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(2), pages 299-307, February.
  • Handle: RePEc:pal:jorsoc:v:66:y:2015:i:2:p:299-307
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v66/n2/pdf/jors2013174a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v66/n2/full/jors2013174a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:66:y:2015:i:2:p:299-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.