IDEAS home Printed from https://ideas.repec.org/r/eee/intfor/v19y2003i4p715-725.html
   My bibliography  Save this item

Exponential smoothing with a damped multiplicative trend

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901.
  2. Rob J Hyndman & Muhammad Akram, 2006. "Some Nonlinear Exponential Smoothing Models are Unstable," Monash Econometrics and Business Statistics Working Papers 3/06, Monash University, Department of Econometrics and Business Statistics.
  3. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
  4. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Ecological Economics, Elsevier, vol. 170(C).
  5. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
  6. P. Velumani & N. V. N. Nampoothiri & M. Urbański, 2021. "A Comparative Study of Models for the Construction Duration Prediction in Highway Road Projects of India," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
  7. Amiri, Arshia & Bakhshoodeh, Mohamad & Najafi, Bahaeddin, 2011. "Forecasting seasonality in prices of potatoes and onions: challenge between geostatistical models, neuro fuzzy approach and Winter method," MPRA Paper 34093, University Library of Munich, Germany.
  8. Hess, Alexander & Spinler, Stefan & Winkenbach, Matthias, 2021. "Real-time demand forecasting for an urban delivery platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
  9. Petropoulos, Fotios & Makridakis, Spyros & Stylianou, Neophytos, 2022. "COVID-19: Forecasting confirmed cases and deaths with a simple time series model," International Journal of Forecasting, Elsevier, vol. 38(2), pages 439-452.
  10. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
  11. de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
  12. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  13. M A Rahman & B R Sarker & L A Escobar, 2011. "Peak demand forecasting for a seasonal product using Bayesian approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1019-1028, June.
  14. Udenio, Maximiliano & Vatamidou, Eleni & Fransoo, Jan C., 2023. "Exponential smoothing forecasts: Taming the Bullwhip Effect when demand is seasonal," Other publications TiSEM 8fca6329-83b9-4a49-a2aa-e, Tilburg University, School of Economics and Management.
  15. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
  16. Song, Haiyan & Gao, Bastian Z. & Lin, Vera S., 2013. "Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system," International Journal of Forecasting, Elsevier, vol. 29(2), pages 295-310.
  17. Tiago Silveira Gontijo & Marcelo Azevedo Costa, 2020. "Forecasting Hierarchical Time Series in Power Generation," Energies, MDPI, vol. 13(14), pages 1-17, July.
  18. Rostami-Tabar, Bahman & Babai, Mohamed Zied & Ducq, Yves & Syntetos, Aris, 2015. "Non-stationary demand forecasting by cross-sectional aggregation," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 297-309.
  19. Niematallah Elamin & Mototsugu Fukushige, 2016. "Forecasting extreme seasonal tourism demand," Discussion Papers in Economics and Business 16-23, Osaka University, Graduate School of Economics.
  20. Li, Qinyun & Disney, Stephen M. & Gaalman, Gerard, 2014. "Avoiding the bullwhip effect using Damped Trend forecasting and the Order-Up-To replenishment policy," International Journal of Production Economics, Elsevier, vol. 149(C), pages 3-16.
  21. Ferbar Tratar, Liljana & Mojškerc, Blaž & Toman, Aleš, 2016. "Demand forecasting with four-parameter exponential smoothing," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 162-173.
  22. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
  23. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
  24. Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
  25. Filelis - Papadopoulos, Christos K. & Kyziropoulos, Panagiotis E. & Morrison, John P. & O‘Reilly, Philip, 2022. "Modelling and forecasting based on recursive incomplete pseudoinverse matrices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 358-376.
  26. Francisco Zamora-Martínez & Pablo Romeu & Paloma Botella-Rocamora & Juan Pardo, 2013. "Towards Energy Efficiency: Forecasting Indoor Temperature via Multivariate Analysis," Energies, MDPI, vol. 6(9), pages 1-21, September.
  27. Bahman Rostami‐Tabar & M. Zied Babai & Aris Syntetos & Yves Ducq, 2013. "Demand forecasting by temporal aggregation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(6), pages 479-498, September.
  28. Abolghasemi, Mahdi & Hurley, Jason & Eshragh, Ali & Fahimnia, Behnam, 2020. "Demand forecasting in the presence of systematic events: Cases in capturing sales promotions," International Journal of Production Economics, Elsevier, vol. 230(C).
  29. Muhammad Akram & Rob J. Hyndman & J. Keith Ord, 2007. "Non-linear exponential smoothing and positive data," Monash Econometrics and Business Statistics Working Papers 14/07, Monash University, Department of Econometrics and Business Statistics.
  30. repec:jss:jstsof:27:i03 is not listed on IDEAS
  31. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
  32. Svetunkov, Ivan & Kourentzes, Nikolaos, 2015. "Complex Exponential Smoothing," MPRA Paper 69394, University Library of Munich, Germany.
  33. E. Vercher & A. Corberán-Vallet & J. Segura & J. Bermúdez, 2012. "Initial conditions estimation for improving forecast accuracy in exponential smoothing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 517-533, July.
  34. Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
  35. Sun, Zhentian & Li, Xuhong & Xie, Yuanchang, 2014. "A comparison of innovative financing and general fiscal investment strategies for second-class highways: Perspectives for building a sustainable financing strategy," Transport Policy, Elsevier, vol. 35(C), pages 193-201.
  36. Hanyuan Zhang & Jiangping Lu, 2022. "Forecasting hotel room demand amid COVID-19," Tourism Economics, , vol. 28(1), pages 200-221, February.
  37. Gonghao Duan & Ruiqing Niu, 2018. "Lake Area Analysis Using Exponential Smoothing Model and Long Time-Series Landsat Images in Wuhan, China," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
  38. Fotios Petropoulos & Spyros Makridakis, 2020. "Forecasting the novel coronavirus COVID-19," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-8, March.
  39. Dinesh Reddy Vangumalli & Konstantinos Nikolopoulos & Konstantia Litsiou, 2019. "Clustering, Forecasting and Cluster Forecasting: using k-medoids, k-NNs and random forests for cluster selection," Working Papers 19016, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
  40. Niematallah Elamin & Mototsugu Fukushige, 2018. "Forecasting extreme seasonal tourism demand: the case of Rishiri Island in Japan," Asia-Pacific Journal of Regional Science, Springer, vol. 2(2), pages 279-296, August.
  41. Mohammad Zeynoddin & Hossein Bonakdari & Silvio José Gumiere & Alain N. Rousseau, 2023. "Multi-Tempo Forecasting of Soil Temperature Data; Application over Quebec, Canada," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
  42. J D Bermúdez & J V Segura & E Vercher, 2006. "Improving demand forecasting accuracy using nonlinear programming software," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 94-100, January.
  43. Shubhra Paul & Lauren B. Davis, 2022. "An ensemble forecasting model for predicting contribution of food donors based on supply behavior," Annals of Operations Research, Springer, vol. 319(1), pages 1-29, December.
  44. Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009. "Hierarchical forecasts for Australian domestic tourism," International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
  45. Sylvia Jenčová & Petra Vašaničová & Martina Košíková & Marta Miškufová, 2025. "A Time Series Approach to Forecasting Financial Indicators in the Wholesale and Retail Trade," World, MDPI, vol. 6(1), pages 1-40, January.
  46. Bogdan Oancea & Richard Pospíšil & Marius Nicolae Jula & Cosmin-Ionuț Imbrișcă, 2021. "Experiments with Fuzzy Methods for Forecasting Time Series as Alternatives to Classical Methods," Mathematics, MDPI, vol. 9(19), pages 1-17, October.
  47. Zhang, Hanyuan & Song, Haiyan & Wen, Long & Liu, Chang, 2021. "Forecasting tourism recovery amid COVID-19," Annals of Tourism Research, Elsevier, vol. 87(C).
  48. Rania A. H. Mohamed, 2023. "Enhancing forecast accuracy using combination methods for the hierarchical time series approach," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-18, July.
  49. Avgustin Milanov, 2020. "Forecasting Of Some Key Indicators Of The Rfi And Rfp Processes Of The Bulgarian Mobile Telecommunication Operators," Economics & Law, Faculty of Economics, SOUTH-WEST UNIVERSITY "NEOFIT RILSKI", BLAGOEVGRAD, vol. 2(2), pages 62-70.
  50. Muslima Zahan & Ron S. Kenett, 2013. "Modeling and Forecasting Energy Consumption in the Manufacturing Industry in South Asia," International Journal of Energy Economics and Policy, Econjournals, vol. 3(1), pages 87-98.
  51. Bahman Rostami‐Tabar & Mohamed Zied Babai & Aris Syntetos & Yves Ducq, 2014. "A note on the forecast performance of temporal aggregation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(7), pages 489-500, October.
  52. Dimitrov, Preslav & Daleva, Diana & Stoyanova, Milena, 2017. "Forecasting of the Volume of the SPA and Wellness Tourism Receipts in the South-West Bulgaria," Journal of Tourism, Sustainability and Well-being, Cinturs - Research Centre for Tourism, Sustainability and Well-being, University of Algarve, vol. 5(2), pages 83-99.
  53. Oscar Trull & Angel Peiró-Signes & J. Carlos García-Díaz, 2019. "Electricity Forecasting Improvement in a Destination Using Tourism Indicators," Sustainability, MDPI, vol. 11(13), pages 1-16, July.
  54. Oscar Trull & J. Carlos Garc'ia-D'iaz & Angel Peir'o-Signes, 2024. "mshw, a forecasting library to predict short-term electricity demand based on multiple seasonal Holt-Winters," Papers 2402.10982, arXiv.org.
  55. Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
  56. Lingbing Feng & Yanlin Shi, 2018. "Forecasting mortality rates: multivariate or univariate models?," Journal of Population Research, Springer, vol. 35(3), pages 289-318, September.
  57. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  58. J W Taylor, 2011. "Multi-item sales forecasting with total and split exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 555-563, March.
  59. Yavuz Acar, 2014. "Forecasting Method Selection Based on Operational Performance," Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 28(1), pages 95-114.
  60. Mun, Mak Kit & Chong, Choo Wei, 2018. "Forecasting Movie Demand Using Total and Split Exponential Smoothing," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 52(2), pages 81-94.
  61. Neubauer, Lukas & Filzmoser, Peter, 2024. "Improving forecasts for heterogeneous time series by “averaging”, with application to food demand forecasts," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1622-1645.
  62. George P. Papaioannou & Christos Dikaiakos & Anargyros Dramountanis & Panagiotis G. Papaioannou, 2016. "Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoot," Energies, MDPI, vol. 9(8), pages 1-40, August.
  63. James W. Taylor, 2004. "Smooth transition exponential smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 385-404.
  64. Yanlin Shi & Sixian Tang & Jackie Li, 2020. "A Two-Population Extension of the Exponential Smoothing State Space Model with a Smoothing Penalisation Scheme," Risks, MDPI, vol. 8(3), pages 1-18, June.
  65. Esma Kahraman & Ozlem Akay, 2023. "Comparison of exponential smoothing methods in forecasting global prices of main metals," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(3), pages 427-435, September.
  66. Zeynep Ozsut Bogar & Askiner Gungor, 2023. "Forecasting Waste Mobile Phone (WMP) Quantity and Evaluating the Potential Contribution to the Circular Economy: A Case Study of Turkey," Sustainability, MDPI, vol. 15(4), pages 1-38, February.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.