IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v35y2010i5p2059-2069.html
   My bibliography  Save this item

Theoretical efficiency limits for energy conversion devices

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yuancheng Lin & Chinhao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Analysis of Changes in the Aggregate Exergy Efficiency of China’s Energy System from 2005 to 2015," Energies, MDPI, vol. 14(8), pages 1-27, April.
  2. Clare Hanmer & Charlie Wilson & Oreane Y. Edelenbosch & Detlef P. van Vuuren, 2022. "Translating Global Integrated Assessment Model Output into Lifestyle Change Pathways at the Country and Household Level," Energies, MDPI, vol. 15(5), pages 1-31, February.
  3. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
  4. Roque G Stagnitta & Matteo V Rocco & Emanuela Colombo, 2020. "A Complementary Approach to Traditional Energy Balances for Assessing Energy Efficiency Measures in Final Uses: The Case of Space Heating and Cooling in Argentina," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
  5. Soundararajan, Kamal & Ho, Hiang Kwee & Su, Bin, 2014. "Sankey diagram framework for energy and exergy flows," Applied Energy, Elsevier, vol. 136(C), pages 1035-1042.
  6. Marchionni, Matteo & Bianchi, Giuseppe & Tassou, Savvas A., 2018. "Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state," Energy, Elsevier, vol. 148(C), pages 1140-1152.
  7. Deleidi, Matteo & Mazzucato, Mariana & Semieniuk, Gregor, 2020. "Neither crowding in nor out: Public direct investment mobilising private investment into renewable electricity projects," Energy Policy, Elsevier, vol. 140(C).
  8. Lin, Yuancheng & Ma, Linwei & Li, Zheng & Ni, Weidou, 2023. "The carbon reduction potential by improving technical efficiency from energy sources to final services in China: An extended Kaya identity analysis," Energy, Elsevier, vol. 263(PE).
  9. Paoli, Leonardo & Cullen, Jonathan, 2020. "Technical limits for energy conversion efficiency," Energy, Elsevier, vol. 192(C).
  10. Mukuve, Feriha Mugisha & Fenner, Richard A., 2015. "The influence of water, land, energy and soil-nutrient resource interactions on the food system in Uganda," Food Policy, Elsevier, vol. 51(C), pages 24-37.
  11. Mona Chitnis, Roger Fouquet, and Steve Sorrell, 2020. "Rebound Effects for Household Energy Services in the UK," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 31-60.
  12. Paolo Malanima, 2020. "The limiting factor: energy, growth, and divergence, 1820–1913," Economic History Review, Economic History Society, vol. 73(2), pages 486-512, May.
  13. Chong, ChinHao & Ma, Linwei & Li, Zheng & Ni, Weidou & Song, Shizhong, 2015. "Logarithmic mean Divisia index (LMDI) decomposition of coal consumption in China based on the energy allocation diagram of coal flows," Energy, Elsevier, vol. 85(C), pages 366-378.
  14. Chinhao Chong & Xi Zhang & Geng Kong & Linwei Ma & Zheng Li & Weidou Ni & Eugene-Hao-Chen Yu, 2021. "A Visualization Method of the Economic Input–Output Table: Mapping Monetary Flows in the Form of Sankey Diagrams," Sustainability, MDPI, vol. 13(21), pages 1-56, November.
  15. Wu, Junnian & Wang, Ruiqi & Pu, Guangying & Qi, Hang, 2016. "Integrated assessment of exergy, energy and carbon dioxide emissions in an iron and steel industrial network," Applied Energy, Elsevier, vol. 183(C), pages 430-444.
  16. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
  17. Paoli, Leonardo & Lupton, Richard C. & Cullen, Jonathan M., 2018. "Useful energy balance for the UK: An uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 176-188.
  18. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
  19. Nick Eyre, 2013. "Decentralization of governance in the low-carbon transition," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 27, pages 581-597, Edward Elgar Publishing.
  20. Victor Court, 2018. "Energy Capture, Technological Change, and Economic Growth: An Evolutionary Perspective," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-27, September.
  21. Zhang, Yongyu & Gao, Ran & Si, Pengfei & Shi, Lijun & Shang, Yinghui & Wang, Yi & Liu, Boran & Du, Xueqing & Zhao, Kejie & Li, Angui, 2023. "Study on performances of heat-oxygen coupling device for high-altitude environments," Energy, Elsevier, vol. 272(C).
  22. Wu, Junnian & Pu, Guangying & Guo, Yan & Lv, Jingwen & Shang, Jiangwei, 2018. "Retrospective and prospective assessment of exergy, life cycle carbon emissions, and water footprint for coking network evolution in China," Applied Energy, Elsevier, vol. 218(C), pages 479-493.
  23. Victor Court, 2019. "An Estimation of Different Minimum Exergy Return Ratios Required for Society," Biophysical Economics and Resource Quality, Springer, vol. 4(3), pages 1-13, September.
  24. Dias, Tomás Andrade da Cunha & Lora, Electo Eduardo Silva & Maya, Diego Mauricio Yepes & Olmo, Oscar Almazán del, 2021. "Global potential assessment of available land for bioenergy projects in 2050 within food security limits," Land Use Policy, Elsevier, vol. 105(C).
  25. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
  26. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.
  27. Mousa, Mohamed H. & Yang, Cheng-Min & Nawaz, Kashif & Miljkovic, Nenad, 2022. "Review of heat transfer enhancement techniques in two-phase flows for highly efficient and sustainable cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  28. Miguel Palma & Tânia Sousa & Zeus Guevara, 2016. "How Much Detail Should We Use to Compute Societal Aggregated Exergy Efficiencies?," Energies, MDPI, vol. 9(5), pages 1-13, May.
  29. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
  30. Arnulf Grubler & Charlie Wilson & Nuno Bento & Benigna Boza-Kiss & Volker Krey & David L. McCollum & Narasimha D. Rao & Keywan Riahi & Joeri Rogelj & Simon Stercke & Jonathan Cullen & Stefan Frank & O, 2018. "A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies," Nature Energy, Nature, vol. 3(6), pages 515-527, June.
  31. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
  32. Iglesias Garcia, Steven & Ferreiro Garcia, Ramon & Carbia Carril, Jose & Iglesias Garcia, Denis, 2018. "A review of thermodynamic cycles used in low temperature recovery systems over the last two years," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 760-767.
  33. Ma, Linwei & Allwood, Julian M. & Cullen, Jonathan M. & Li, Zheng, 2012. "The use of energy in China: Tracing the flow of energy from primary source to demand drivers," Energy, Elsevier, vol. 40(1), pages 174-188.
  34. Aramendia, Emmanuel & Brockway, Paul E. & Pizzol, Massimo & Heun, Matthew K., 2021. "Moving from final to useful stage in energy-economy analysis: A critical assessment," Applied Energy, Elsevier, vol. 283(C).
  35. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
  36. Brand-Correa, Lina I. & Steinberger, Julia K., 2017. "A Framework for Decoupling Human Need Satisfaction From Energy Use," Ecological Economics, Elsevier, vol. 141(C), pages 43-52.
  37. Zeus Guevara & Tânia Sousa & Tiago Domingos, 2016. "Insights on Energy Transitions in Mexico from the Analysis of Useful Exergy 1971–2009," Energies, MDPI, vol. 9(7), pages 1-29, June.
  38. Meran, Georg, 2019. "Thermodynamic constraints and the use of energy-dependent CES-production functions A cautionary comment," Energy Economics, Elsevier, vol. 81(C), pages 63-69.
  39. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.