My bibliography
Save this item
Photovoltaic power forecasting based LSTM-Convolutional Network
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ren, Xiaoying & Zhang, Fei & Zhu, Honglu & Liu, Yongqian, 2022. "Quad-kernel deep convolutional neural network for intra-hour photovoltaic power forecasting," Applied Energy, Elsevier, vol. 323(C).
- Li, Qing & Zhang, Xinyan & Ma, Tianjiao & Jiao, Chunlei & Wang, Heng & Hu, Wei, 2021. "A multi-step ahead photovoltaic power prediction model based on similar day, enhanced colliding bodies optimization, variational mode decomposition, and deep extreme learning machine," Energy, Elsevier, vol. 224(C).
- Miseta, Tamás & Fodor, Attila & Vathy-Fogarassy, Ágnes, 2022. "Energy trading strategy for storage-based renewable power plants," Energy, Elsevier, vol. 250(C).
- Liu, Guanjun & Qin, Hui & Shen, Qin & Lyv, Hao & Qu, Yuhua & Fu, Jialong & Liu, Yongqi & Zhou, Jianzhong, 2021. "Probabilistic spatiotemporal solar irradiation forecasting using deep ensembles convolutional shared weight long short-term memory network," Applied Energy, Elsevier, vol. 300(C).
- Korkmaz, Deniz, 2021. "SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 300(C).
- Wang, Min & Rao, Congjun & Xiao, Xinping & Hu, Zhuo & Goh, Mark, 2024. "Efficient shrinkage temporal convolutional network model for photovoltaic power prediction," Energy, Elsevier, vol. 297(C).
- Xu, Shaozhen & Liu, Jun & Huang, Xiaoqiao & Li, Chengli & Chen, Zaiqing & Tai, Yonghang, 2024. "Minutely multi-step irradiance forecasting based on all-sky images using LSTM-InformerStack hybrid model with dual feature enhancement," Renewable Energy, Elsevier, vol. 224(C).
- Tserenpurev Chuluunsaikhan & Jeong-Hun Kim & Yoonsung Shin & Sanghyun Choi & Aziz Nasridinov, 2022. "Feasibility Study on the Influence of Data Partition Strategies on Ensemble Deep Learning: The Case of Forecasting Power Generation in South Korea," Energies, MDPI, vol. 15(20), pages 1-20, October.
- Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
- Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
- Wang, Jianxing & Guo, Lili & Zhang, Chengying & Song, Lei & Duan, Jiangyong & Duan, Liqiang, 2020. "Thermal power forecasting of solar power tower system by combining mechanism modeling and deep learning method," Energy, Elsevier, vol. 208(C).
- Rizk M Rizk-Allah & Lobna M Abouelmagd & Ashraf Darwish & Vaclav Snasel & Aboul Ella Hassanien, 2024. "Explainable AI and optimized solar power generation forecasting model based on environmental conditions," PLOS ONE, Public Library of Science, vol. 19(10), pages 1-33, October.
- Manuel Jaramillo & Wilson Pavón & Lisbeth Jaramillo, 2024. "Adaptive Forecasting in Energy Consumption: A Bibliometric Analysis and Review," Data, MDPI, vol. 9(1), pages 1-23, January.
- Youssef Elomari & Masoud Norouzi & Marc Marín-Genescà & Alberto Fernández & Dieter Boer, 2022. "Integration of Solar Photovoltaic Systems into Power Networks: A Scientific Evolution Analysis," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
- Aftab Ahmed Almani & Xueshan Han, 2023. "Real-Time Pricing-Enabled Demand Response Using Long Short-Time Memory Deep Learning," Energies, MDPI, vol. 16(5), pages 1-13, March.
- Zhenyuan Zhuang & Huaizhi Wang & Cilong Yu, 2024. "Short-Term Irradiance Prediction Based on Transformer with Inverted Functional Area Structure," Mathematics, MDPI, vol. 12(20), pages 1-20, October.
- Huang, Congzhi & Yang, Mengyuan, 2023. "Memory long and short term time series network for ultra-short-term photovoltaic power forecasting," Energy, Elsevier, vol. 279(C).
- Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
- Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
- Tovar Rosas, Mario A. & Pérez, Miguel Robles & Martínez Pérez, E. Rafael, 2022. "Itineraries for charging and discharging a BESS using energy predictions based on a CNN-LSTM neural network model in BCS, Mexico," Renewable Energy, Elsevier, vol. 188(C), pages 1141-1165.
- Perera, Maneesha & De Hoog, Julian & Bandara, Kasun & Senanayake, Damith & Halgamuge, Saman, 2024. "Day-ahead regional solar power forecasting with hierarchical temporal convolutional neural networks using historical power generation and weather data," Applied Energy, Elsevier, vol. 361(C).
- Khan, Taimoor & Choi, Chang, 2025. "Attention enhanced dual stream network with advanced feature selection for power forecasting," Applied Energy, Elsevier, vol. 377(PC).
- Rodríguez, Fermín & Martín, Fernando & Fontán, Luis & Galarza, Ainhoa, 2021. "Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power," Energy, Elsevier, vol. 229(C).
- Ze Wu & Feifan Pan & Dandan Li & Hao He & Tiancheng Zhang & Shuyun Yang, 2022. "Prediction of Photovoltaic Power by the Informer Model Based on Convolutional Neural Network," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
- Hong Wu & Haipeng Liu & Huaiping Jin & Yanping He, 2024. "Ultra-Short-Term Photovoltaic Power Prediction by NRGA-BiLSTM Considering Seasonality and Periodicity of Data," Energies, MDPI, vol. 17(18), pages 1-19, September.
- Kaitong Wu & Xiangang Peng & Zilu Li & Wenbo Cui & Haoliang Yuan & Chun Sing Lai & Loi Lei Lai, 2022. "A Short-Term Photovoltaic Power Forecasting Method Combining a Deep Learning Model with Trend Feature Extraction and Feature Selection," Energies, MDPI, vol. 15(15), pages 1-20, July.
- Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
- Cui, Shuhui & Lyu, Shouping & Ma, Yongzhi & Wang, Kai, 2024. "Improved informer PV power short-term prediction model based on weather typing and AHA-VMD-MPE," Energy, Elsevier, vol. 307(C).
- Rita Teixeira & Adelaide Cerveira & Eduardo J. Solteiro Pires & José Baptista, 2024. "Advancing Renewable Energy Forecasting: A Comprehensive Review of Renewable Energy Forecasting Methods," Energies, MDPI, vol. 17(14), pages 1-30, July.
- Yao, Haowei & Qu, Pengyu & Qin, Hengjie & Lou, Zhen & Wei, Xiaoge & Song, Huaitao, 2024. "Multidimensional electric power parameter time series forecasting and anomaly fluctuation analysis based on the AFFC-GLDA-RL method," Energy, Elsevier, vol. 313(C).
- Xie, Yiwei & Hu, Pingfang & Zhu, Na & Lei, Fei & Xing, Lu & Xu, Linghong & Sun, Qiming, 2020. "A hybrid short-term load forecasting model and its application in ground source heat pump with cooling storage system," Renewable Energy, Elsevier, vol. 161(C), pages 1244-1259.
- Jincun Liu & Kangji Li & Wenping Xue, 2024. "Photovoltaic Solar Power Prediction Using iPSO-Based Data Clustering and AdaLSTM Network," Energies, MDPI, vol. 17(7), pages 1-21, March.
- Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
- Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
- Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Peter Makeen & Hani A. Ghali & Saim Memon, 2022. "Theoretical and Experimental Analysis of a New Intelligent Charging Controller for Off-Board Electric Vehicles Using PV Standalone System Represented by a Small-Scale Lithium-Ion Battery," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
- Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
- Arash Moradzadeh & Sahar Zakeri & Maryam Shoaran & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2020. "Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
- Wang, Hu & Mao, Lei & Zhang, Heng & Wu, Qiang, 2024. "Multi-prediction of electric load and photovoltaic solar power in grid-connected photovoltaic system using state transition method," Applied Energy, Elsevier, vol. 353(PB).
- Ruan, Zhaohui & Sun, Weiwei & Yuan, Yuan & Tan, Heping, 2023. "Accurately forecasting solar radiation distribution at both spatial and temporal dimensions simultaneously with fully-convolutional deep neural network model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Yang, Hufang & Jiang, Ping & Wang, Ying & Li, Hongmin, 2022. "A fuzzy intelligent forecasting system based on combined fuzzification strategy and improved optimization algorithm for renewable energy power generation," Applied Energy, Elsevier, vol. 325(C).
- Xinyu Sun & Hao Wu & Siqi Guo & Lingwei Zheng, 2022. "Day-Ahead Optimal Scheduling of Integrated Energy System Based on Type-II Fuzzy Interval Chance-Constrained Programming," Energies, MDPI, vol. 15(18), pages 1-17, September.
- Hao Zhen & Dongxiao Niu & Min Yu & Keke Wang & Yi Liang & Xiaomin Xu, 2020. "A Hybrid Deep Learning Model and Comparison for Wind Power Forecasting Considering Temporal-Spatial Feature Extraction," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
- Cao, Yisheng & Liu, Gang & Luo, Donghua & Bavirisetti, Durga Prasad & Xiao, Gang, 2023. "Multi-timescale photovoltaic power forecasting using an improved Stacking ensemble algorithm based LSTM-Informer model," Energy, Elsevier, vol. 283(C).
- Yin, Linfei & Zhang, Bin, 2023. "Relaxed deep generative adversarial networks for real-time economic smart generation dispatch and control of integrated energy systems," Applied Energy, Elsevier, vol. 330(PA).
- Zhen, Hao & Niu, Dongxiao & Wang, Keke & Shi, Yucheng & Ji, Zhengsen & Xu, Xiaomin, 2021. "Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information," Energy, Elsevier, vol. 231(C).
- Mario Tovar & Miguel Robles & Felipe Rashid, 2020. "PV Power Prediction, Using CNN-LSTM Hybrid Neural Network Model. Case of Study: Temixco-Morelos, México," Energies, MDPI, vol. 13(24), pages 1-15, December.
- Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
- Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).
- Sameer Al-Dahidi & Manoharan Madhiarasan & Loiy Al-Ghussain & Ahmad M. Abubaker & Adnan Darwish Ahmad & Mohammad Alrbai & Mohammadreza Aghaei & Hussein Alahmer & Ali Alahmer & Piero Baraldi & Enrico Z, 2024. "Forecasting Solar Photovoltaic Power Production: A Comprehensive Review and Innovative Data-Driven Modeling Framework," Energies, MDPI, vol. 17(16), pages 1-38, August.
- Hongbo Gao & Shuang Qiu & Jun Fang & Nan Ma & Jiye Wang & Kun Cheng & Hui Wang & Yidong Zhu & Dawei Hu & Hengyu Liu & Jun Wang, 2023. "Short-Term Prediction of PV Power Based on Combined Modal Decomposition and NARX-LSTM-LightGBM," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
- Seok-Jun Bu & Sung-Bae Cho, 2020. "Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-16, September.
- Lan Cao & Haoyu Yang & Chenggong Zhou & Shaochi Wang & Yingang Shen & Binxia Yuan, 2024. "Photovoltaic Short-Term Output Power Forecast Model Based on Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise–Kernel Principal Component Analysis–Long Short-Term Memory," Energies, MDPI, vol. 17(24), pages 1-14, December.
- Fachrizal Aksan & Vishnu Suresh & Przemysław Janik & Tomasz Sikorski, 2023. "Load Forecasting for the Laser Metal Processing Industry Using VMD and Hybrid Deep Learning Models," Energies, MDPI, vol. 16(14), pages 1-24, July.
- Tukymbekov, Didar & Saymbetov, Ahmet & Nurgaliyev, Madiyar & Kuttybay, Nurzhigit & Dosymbetova, Gulbakhar & Svanbayev, Yeldos, 2021. "Intelligent autonomous street lighting system based on weather forecast using LSTM," Energy, Elsevier, vol. 231(C).
- Ghimire, Sujan & AL-Musaylh, Mohanad S. & Nguyen-Huy, Thong & Deo, Ravinesh C. & Acharya, Rajendra & Casillas-Pérez, David & Yaseen, Zaher Mundher & Salcedo-Sanz, Sancho, 2025. "Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts," Applied Energy, Elsevier, vol. 378(PA).
- Elham M. Al-Ali & Yassine Hajji & Yahia Said & Manel Hleili & Amal M. Alanzi & Ali H. Laatar & Mohamed Atri, 2023. "Solar Energy Production Forecasting Based on a Hybrid CNN-LSTM-Transformer Model," Mathematics, MDPI, vol. 11(3), pages 1-19, January.
- Li, Chengdong & Zhou, Changgeng & Peng, Wei & Lv, Yisheng & Luo, Xin, 2020. "Accurate prediction of short-term photovoltaic power generation via a novel double-input-rule-modules stacked deep fuzzy method," Energy, Elsevier, vol. 212(C).
- Aamer A. Shah & Almani A. Aftab & Xueshan Han & Mazhar Hussain Baloch & Mohamed Shaik Honnurvali & Sohaib Tahir Chauhdary, 2023. "Prediction Error-Based Power Forecasting of Wind Energy System Using Hybrid WT–ROPSO–NARMAX Model," Energies, MDPI, vol. 16(7), pages 1-15, April.
- Mahdi Khodayar & Jacob Regan, 2023. "Deep Neural Networks in Power Systems: A Review," Energies, MDPI, vol. 16(12), pages 1-38, June.
- Kumari, Pratima & Toshniwal, Durga, 2021. "Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting," Applied Energy, Elsevier, vol. 295(C).
- Xiao, Tianqi & You, Fengqi, 2024. "Physically consistent deep learning-based day-ahead energy dispatching and thermal comfort control for grid-interactive communities," Applied Energy, Elsevier, vol. 353(PB).
- Du, Bin & Lund, Peter D. & Wang, Jun, 2021. "Combining CFD and artificial neural network techniques to predict the thermal performance of all-glass straight evacuated tube solar collector," Energy, Elsevier, vol. 220(C).
- Simon Liebermann & Jung-Sup Um & YoungSeok Hwang & Stephan Schlüter, 2021. "Performance Evaluation of Neural Network-Based Short-Term Solar Irradiation Forecasts," Energies, MDPI, vol. 14(11), pages 1-21, May.
- Cai Tao & Junjie Lu & Jianxun Lang & Xiaosheng Peng & Kai Cheng & Shanxu Duan, 2021. "Short-Term Forecasting of Photovoltaic Power Generation Based on Feature Selection and Bias Compensation–LSTM Network," Energies, MDPI, vol. 14(11), pages 1-16, May.
- Ma, Huixin & Zhang, Chu & Peng, Tian & Nazir, Muhammad Shahzad & Li, Yiman, 2022. "An integrated framework of gated recurrent unit based on improved sine cosine algorithm for photovoltaic power forecasting," Energy, Elsevier, vol. 256(C).
- Shang, Jingyi & Gao, Jinfeng & Jiang, Xin & Liu, Mingguang & Liu, Dunnan, 2023. "Optimal configuration of hybrid energy systems considering power to hydrogen and electricity-price prediction: A two-stage multi-objective bi-level framework," Energy, Elsevier, vol. 263(PF).
- Mellit, A. & Pavan, A. Massi & Lughi, V., 2021. "Deep learning neural networks for short-term photovoltaic power forecasting," Renewable Energy, Elsevier, vol. 172(C), pages 276-288.
- Soleimanzade, Mohammad Amin & Sadrzadeh, Mohtada, 2021. "Deep learning-based energy management of a hybrid photovoltaic-reverse osmosis-pressure retarded osmosis system," Applied Energy, Elsevier, vol. 293(C).
- liu, Qian & li, Yulin & jiang, Hang & chen, Yilin & zhang, Jiang, 2024. "Short-term photovoltaic power forecasting based on multiple mode decomposition and parallel bidirectional long short term combined with convolutional neural networks," Energy, Elsevier, vol. 286(C).
- Hao, Jianhua & Liu, Fangai & Zhang, Weiwei, 2024. "Multi-scale RWKV with 2-dimensional temporal convolutional network for short-term photovoltaic power forecasting," Energy, Elsevier, vol. 309(C).
- Chen, Rujian & Liu, Gang & Cao, Yisheng & Xiao, Gang & Tang, Jianchao, 2024. "CGAformer: Multi-scale feature Transformer with MLP architecture for short-term photovoltaic power forecasting," Energy, Elsevier, vol. 312(C).
- Li, Fengyun & Zheng, Haofeng & Li, Xingmei, 2022. "A novel hybrid model for multi-step ahead photovoltaic power prediction based on conditional time series generative adversarial networks," Renewable Energy, Elsevier, vol. 199(C), pages 560-586.
- Eugenio Borghini & Cinzia Giannetti & James Flynn & Grazia Todeschini, 2021. "Data-Driven Energy Storage Scheduling to Minimise Peak Demand on Distribution Systems with PV Generation," Energies, MDPI, vol. 14(12), pages 1-22, June.
- Zhu, Yinlong & Li, Guoliang & Jiang, Yonglei & Li, Ming & Wang, Yunfeng & Zhang, Ying & Liu, Yali & Yao, Muchi, 2025. "Predicting photovoltaic greenhouse irradiance at low-latitudes of plateau based on ultra-short-term time series," Renewable Energy, Elsevier, vol. 239(C).
- Song, Youcheng & Wang, Haijun & Peng, Xiaotao & Sun, Duan & Chen, Rui, 2023. "Modeling land use change prediction using multi-model fusion techniques: A case study in the Pearl River Delta, China," Ecological Modelling, Elsevier, vol. 486(C).
- Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Liu, Jun & Shi, Junsheng & Liu, Wuming, 2022. "Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM," Energy, Elsevier, vol. 246(C).
- Junfeng Yu & Xiaodong Li & Lei Yang & Linze Li & Zhichao Huang & Keyan Shen & Xu Yang & Xu Yang & Zhikang Xu & Dongying Zhang & Shuai Du, 2024. "Deep Learning Models for PV Power Forecasting: Review," Energies, MDPI, vol. 17(16), pages 1-35, August.
- Ladislav Zjavka, 2021. "Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation," Energies, MDPI, vol. 14(22), pages 1-14, November.
- Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Chang, Mingheng & Chen, Xiangyue & Wang, Wenpeng & Ma, Lei & Chen, Bolong, 2023. "A multistep short-term solar radiation forecasting model using fully convolutional neural networks and chaotic aquila optimization combining WRF-Solar model results," Energy, Elsevier, vol. 271(C).