IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs0306261923014976.html
   My bibliography  Save this article

Physically consistent deep learning-based day-ahead energy dispatching and thermal comfort control for grid-interactive communities

Author

Listed:
  • Xiao, Tianqi
  • You, Fengqi

Abstract

Grid-interactive communities are an emerging solution for optimal energy dispatching, improving grid stability, and enhancing the usage of on-site renewable energy by leveraging community flexibilities. This work introduces a novel Physically Consistent Deep Learning (PCDL)-based optimization framework for day-ahead energy dispatching and thermal comfort control within grid-interactive communities. Specifically, the PCDL model is developed to capture the thermal dynamics within the community while ensuring strict adherence to physics consistency. This consistency is defined with the aim of generating physically viable solutions in response to modified system inputs. Subsequently, the PCDL model is utilized for load estimation and indoor climate prediction within a proposed scheduling and control strategy: (1) an optimal energy dispatching plan is calculated based on the day-ahead grid market; (2) a real-time model predictive control (MPC) method is applied to minimize the utilization error and indoor comfort constraint violations caused by following the scheduled energy dispatching plan. A simulation case of a residential hall community at Cornell University with on-site renewable energy resources is implemented to demonstrate the effectiveness of the proposed approach. Comparative simulations, which include the Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Gaussian Process (GP) regression models, confirm the performance advantage of capturing community thermal dynamic and control-oriented generalization ability when using the PCDL model. These results leads to notable improvements in indoor thermal comfort control, ranging between 65.4 and 68.7%, 63.6–79.3%, and 60.4–62.2% for each comparative model, respectively. Moreover, by harnessing community demand flexibility, we achieve energy cost savings between 29.5 and 39.7% compared to the baseline controller.

Suggested Citation

  • Xiao, Tianqi & You, Fengqi, 2024. "Physically consistent deep learning-based day-ahead energy dispatching and thermal comfort control for grid-interactive communities," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923014976
    DOI: 10.1016/j.apenergy.2023.122133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Chenghan & Jia, Hongjie & Jin, Xiaolong & Mu, Yunfei & Yu, Xiaodan & Xu, Xiandong & Li, Binghui & Sun, Weichen, 2023. "Two-stage robust optimization for space heating loads of buildings in integrated community energy systems," Applied Energy, Elsevier, vol. 331(C).
    2. Das, Saborni & Basu, Mousumi, 2020. "Day-ahead optimal bidding strategy of microgrid with demand response program considering uncertainties and outages of renewable energy resources," Energy, Elsevier, vol. 190(C).
    3. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    4. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    5. Kim, Donghun & Wang, Zhe & Brugger, James & Blum, David & Wetter, Michael & Hong, Tianzhen & Piette, Mary Ann, 2022. "Site demonstration and performance evaluation of MPC for a large chiller plant with TES for renewable energy integration and grid decarbonization," Applied Energy, Elsevier, vol. 321(C).
    6. Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).
    7. Smarra, Francesco & Jain, Achin & de Rubeis, Tullio & Ambrosini, Dario & D’Innocenzo, Alessandro & Mangharam, Rahul, 2018. "Data-driven model predictive control using random forests for building energy optimization and climate control," Applied Energy, Elsevier, vol. 226(C), pages 1252-1272.
    8. Xie, Jiahan & Ajagekar, Akshay & You, Fengqi, 2023. "Multi-Agent attention-based deep reinforcement learning for demand response in grid-responsive buildings," Applied Energy, Elsevier, vol. 342(C).
    9. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    10. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    11. Bünning, Felix & Huber, Benjamin & Schalbetter, Adrian & Aboudonia, Ahmed & Hudoba de Badyn, Mathias & Heer, Philipp & Smith, Roy S. & Lygeros, John, 2022. "Physics-informed linear regression is competitive with two Machine Learning methods in residential building MPC," Applied Energy, Elsevier, vol. 310(C).
    12. Clauß, John & Georges, Laurent, 2019. "Model complexity of heat pump systems to investigate the building energy flexibility and guidelines for model implementation," Applied Energy, Elsevier, vol. 255(C).
    13. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    14. Liu, Chunming & Wang, Chunling & Yin, Yujun & Yang, Peihong & Jiang, Hui, 2022. "Bi-level dispatch and control strategy based on model predictive control for community integrated energy system considering dynamic response performance," Applied Energy, Elsevier, vol. 310(C).
    15. Chen, Wei-Han & You, Fengqi, 2022. "Sustainable building climate control with renewable energy sources using nonlinear model predictive control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).
    17. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2021. "Model predictive control for integrated control of air-conditioning and mechanical ventilation, lighting and shading systems," Applied Energy, Elsevier, vol. 297(C).
    18. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2020. "Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization," Applied Energy, Elsevier, vol. 271(C).
    19. Abu-Rayash, Azzam & Dincer, Ibrahim, 2020. "Development of an integrated energy system for smart communities," Energy, Elsevier, vol. 202(C).
    20. Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2021. "Feature assessment frameworks to evaluate reduced-order grey-box building energy models," Applied Energy, Elsevier, vol. 298(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    2. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    3. Guo, Yanhua & Wang, Ningbo & Shao, Shuangquan & Huang, Congqi & Zhang, Zhentao & Li, Xiaoqiong & Wang, Youdong, 2024. "A review on hybrid physics and data-driven modeling methods applied in air source heat pump systems for energy efficiency improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    4. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    5. Liang, Xinbin & Zhu, Xu & Chen, Siliang & Jin, Xinqiao & Xiao, Fu & Du, Zhimin, 2023. "Physics-constrained cooperative learning-based reference models for smart management of chillers considering extrapolation scenarios," Applied Energy, Elsevier, vol. 349(C).
    6. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
    7. Chen, Wei-Han & You, Fengqi, 2024. "Sustainable energy management and control for Decarbonization of complex multi-zone buildings with renewable solar and geothermal energies using machine learning, robust optimization, and predictive c," Applied Energy, Elsevier, vol. 372(C).
    8. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).
    9. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    10. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    11. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    12. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control for Demand- and Market-Responsive building energy management by leveraging active latent heat storage," Applied Energy, Elsevier, vol. 327(C).
    13. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    14. Liang, Xinbin & Zhu, Xu & Chen, Kang & Chen, Siliang & Jin, Xinqiao & Du, Zhimin, 2023. "Endowing data-driven models with rejection ability: Out-of-distribution detection and confidence estimation for black-box models of building energy systems," Energy, Elsevier, vol. 263(PC).
    15. Wang, Xuezheng & Dong, Bing, 2024. "Long-term experimental evaluation and comparison of advanced controls for HVAC systems," Applied Energy, Elsevier, vol. 371(C).
    16. Ahmad, Tanveer & Zhang, Dongdong & Huang, Chao, 2021. "Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications," Energy, Elsevier, vol. 231(C).
    17. Gao, Yuan & Hu, Zehuan & Chen, Wei-An & Liu, Mingzhe, 2024. "Solutions to the insufficiency of label data in renewable energy forecasting: A comparative and integrative analysis of domain adaptation and fine-tuning," Energy, Elsevier, vol. 302(C).
    18. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Bidding modes for renewable energy considering electricity-carbon integrated market mechanism based on multi-agent hybrid game," Energy, Elsevier, vol. 263(PA).
    19. Yang, Shiyu & Wan, Man Pun, 2022. "Machine-learning-based model predictive control with instantaneous linearization – A case study on an air-conditioning and mechanical ventilation system," Applied Energy, Elsevier, vol. 306(PB).
    20. Guo, Fangzhou & Li, Ao & Yue, Bao & Xiao, Ziwei & Xiao, Fu & Yan, Rui & Li, Anbang & Lv, Yan & Su, Bing, 2024. "Improving the out-of-sample generalization ability of data-driven chiller performance models using physics-guided neural network," Applied Energy, Elsevier, vol. 354(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923014976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.