IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v388y2025ics0306261925003617.html
   My bibliography  Save this article

Deeply flexible commercial building HVAC system control: A physics-aware deep learning-embedded MPC approach

Author

Listed:
  • Tang, Lingfeng
  • Xie, Haipeng
  • Wang, Yongguan
  • Xu, Zhanbo

Abstract

Heating, ventilation, and air conditioning (HVAC) systems within commercial buildings can serve as flexible resources to promote the integration of renewable energy into power systems. However, the complicated operational characteristic of chiller and multi-zone thermal dynamics in the coupled water and air loops lead to a high model complexity to HVAC system control, limiting its operational flexibility exploitation. To tackle this problem, this paper proposes a physics-aware deep learning-embedded model predictive control (MPC) approach to enable deeply flexible commercial building HVAC system control for demand response. Firstly, the chiller's operational characteristic is captured via a deep learning model with high approximation capability, integrated with a physics-constrained block to enforce operational constraints. The multi-zone thermal dynamics are modeled using a graph convolutional network informed by the prior building structure. Secondly, the proposed deep learning models are equivalently reformulated into mixed integer linear constraints and seamlessly embedded into the MPC framework. To enhance the solution efficiency, the bound forward propagation algorithm and network pruning techniques are both developed for the deep learning-embedded MPC approach. Finally, a high-fidelity commercial building HVAC system consisting of coupled water and air loops, as well as outdoor weather conditions, indoor occupancy behaviors, etc. is built on the EnergyPlus simulation program. Comprehensive experimental results have validated the effectiveness of the proposed method in improving flexibility utilization.

Suggested Citation

  • Tang, Lingfeng & Xie, Haipeng & Wang, Yongguan & Xu, Zhanbo, 2025. "Deeply flexible commercial building HVAC system control: A physics-aware deep learning-embedded MPC approach," Applied Energy, Elsevier, vol. 388(C).
  • Handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925003617
    DOI: 10.1016/j.apenergy.2025.125631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925003617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Hao & Chen, Xiwen & Vital, Natan & Duffy, Edward & Razi, Abolfazl, 2024. "Energy optimization for HVAC systems in multi-VAV open offices: A deep reinforcement learning approach," Applied Energy, Elsevier, vol. 356(C).
    2. Qu, Zhaoyang & Dong, Yunchang & Li, Yang & Song, Siqi & Jiang, Tao & Li, Min & Wang, Qiming & Wang, Lei & Bo, Xiaoyong & Zang, Jiye & Xu, Qi, 2024. "Localization of dummy data injection attacks in power systems considering incomplete topological information: A spatio-temporal graph wavelet convolutional neural network approach," Applied Energy, Elsevier, vol. 360(C).
    3. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    4. Sigounis, Anna-Maria & Vallianos, Charalampos & Athienitis, Andreas, 2023. "Model predictive control of air-based building integrated PV/T systems for optimal HVAC integration," Renewable Energy, Elsevier, vol. 212(C), pages 655-668.
    5. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    6. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2020. "Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization," Applied Energy, Elsevier, vol. 271(C).
    7. Yang, Shiyu & Wan, Man Pun, 2022. "Machine-learning-based model predictive control with instantaneous linearization – A case study on an air-conditioning and mechanical ventilation system," Applied Energy, Elsevier, vol. 306(PB).
    8. Zhao, Dafang & Watari, Daichi & Ozawa, Yuki & Taniguchi, Ittetsu & Suzuki, Toshihiro & Shimoda, Yoshiyuki & Onoye, Takao, 2023. "Data-driven online energy management framework for HVAC systems: An experimental study," Applied Energy, Elsevier, vol. 352(C).
    9. Pinthurat, Watcharakorn & Surinkaew, Tossaporn & Hredzak, Branislav, 2024. "An overview of reinforcement learning-based approaches for smart home energy management systems with energy storages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    10. Mu, Baojie & Li, Yaoyu & House, John M. & Salsbury, Timothy I., 2017. "Real-time optimization of a chilled water plant with parallel chillers based on extremum seeking control," Applied Energy, Elsevier, vol. 208(C), pages 766-781.
    11. Wang, Xiaoyu & Tian, Shuai & Ren, Jiawen & Jin, Xing & Zhou, Xin & Shi, Xing, 2024. "A novel resistance-capacitance model for evaluating urban building energy loads considering construction boundary heterogeneity," Applied Energy, Elsevier, vol. 361(C).
    12. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    13. Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Zheng, Wanfu & Wang, Dan & Wang, Zhe, 2024. "Economic model predictive control for building HVAC system: A comparative analysis of model-based and data-driven approaches using the BOPTEST Framework," Applied Energy, Elsevier, vol. 374(C).
    15. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xuezheng & Dong, Bing, 2024. "Long-term experimental evaluation and comparison of advanced controls for HVAC systems," Applied Energy, Elsevier, vol. 371(C).
    2. Sun, Luning & Hu, Zehuan & Mae, Masayuki & Imaizumi, Taiji, 2025. "Deep transfer learning strategy based on TimesBlock-CDAN for predicting thermal environment and air conditioner energy consumption in residential buildings," Applied Energy, Elsevier, vol. 381(C).
    3. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    4. Xiao, Tianqi & You, Fengqi, 2024. "Physically consistent deep learning-based day-ahead energy dispatching and thermal comfort control for grid-interactive communities," Applied Energy, Elsevier, vol. 353(PB).
    5. Guo, Yanhua & Wang, Ningbo & Shao, Shuangquan & Huang, Congqi & Zhang, Zhentao & Li, Xiaoqiong & Wang, Youdong, 2024. "A review on hybrid physics and data-driven modeling methods applied in air source heat pump systems for energy efficiency improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    6. Chen, Chao & Zhang, Limao & Zhou, Cheng & Luo, Yongqiang, 2025. "Physics-informed explainable encoder-decoder deep learning for predictive estimation of building carbon emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    7. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    8. Liang, Xinbin & Zhu, Xu & Chen, Siliang & Jin, Xinqiao & Xiao, Fu & Du, Zhimin, 2023. "Physics-constrained cooperative learning-based reference models for smart management of chillers considering extrapolation scenarios," Applied Energy, Elsevier, vol. 349(C).
    9. Rana Loubani & Didier Defer & Ola Alhaj-Hasan & Julien Chamoin, 2025. "Optimization of Hydronic Heating System in a Commercial Building: Application of Predictive Control with Limited Data," Energies, MDPI, vol. 18(9), pages 1-25, April.
    10. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
    11. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
    12. Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
    13. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    14. Andolfi, Laura & Lima Baima, Renan & Burcheri, Lorenzo Matthias & Pavić, Ivan & Fridgen, Gilbert, 2025. "Sociotechnical design of building energy management systems in the public sector: Five design principles," Applied Energy, Elsevier, vol. 377(PD).
    15. Bian, Yuexin & Fu, Xiaohan & Gupta, Rajesh K. & Shi, Yuanyuan, 2024. "Ventilation and temperature control for energy-efficient and healthy buildings: A differentiable PDE approach," Applied Energy, Elsevier, vol. 372(C).
    16. Chen, Dong & Chui, Chee-Kong & Lee, Poh Seng, 2025. "Adaptive physically consistent neural networks for data center thermal dynamics modeling," Applied Energy, Elsevier, vol. 377(PD).
    17. Zheng, Wanfu & Wang, Dan & Wang, Zhe, 2024. "Economic model predictive control for building HVAC system: A comparative analysis of model-based and data-driven approaches using the BOPTEST Framework," Applied Energy, Elsevier, vol. 374(C).
    18. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    19. Ma, Zhihao & Jiang, Gang & Hu, Yuqing & Chen, Jianli, 2025. "A review of physics-informed machine learning for building energy modeling," Applied Energy, Elsevier, vol. 381(C).
    20. Yang, Shiyu & Wan, Man Pun, 2022. "Machine-learning-based model predictive control with instantaneous linearization – A case study on an air-conditioning and mechanical ventilation system," Applied Energy, Elsevier, vol. 306(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925003617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.