IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v213y2025ics1364032125001510.html
   My bibliography  Save this article

Physics-informed explainable encoder-decoder deep learning for predictive estimation of building carbon emissions

Author

Listed:
  • Chen, Chao
  • Zhang, Limao
  • Zhou, Cheng
  • Luo, Yongqiang

Abstract

Building decarbonization is beneficial to improve energy efficiency and mitigate climate change worldwide, and it is necessary to accurately investigate building carbon emissions and identify the potential factors. A crucial challenge is that pioneer studies rarely explore the correlations between controllable parameters and building carbon emissions and are unable to estimate carbon emissions comprehensively. In this context, this work proposes a physics-informed encoder-decoder framework for predictive carbon emissions estimation. The input variables are transformed into sequences to extract essential features and time information in the encoder, where the decoder receives the sequence and makes a prediction. Simultaneously, the control-oriented physical laws are explored and integrated to update the conventional loss function. The proposed model has been applied to a high-rise commercial building in China. Results reveal that: (1) The model sees a significant prediction improvement by 9.24 % after considering physical laws and shows outstanding robustness under five dataset conditions; (2) The R2 for carbon emissions prediction is 0.963, while the accuracy for anomaly detection is 0.963; (3) Historical carbon emissions, supply water temperature and system operation status are the critical factors affecting carbon emissions. The proposed physics-informed deep learning model solves the performance dependencies on dataset size and can be directly used for control-oriented building modeling and decarbonization optimization.

Suggested Citation

  • Chen, Chao & Zhang, Limao & Zhou, Cheng & Luo, Yongqiang, 2025. "Physics-informed explainable encoder-decoder deep learning for predictive estimation of building carbon emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:rensus:v:213:y:2025:i:c:s1364032125001510
    DOI: 10.1016/j.rser.2025.115478
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125001510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ürge-Vorsatz, Diana & Cabeza, Luisa F. & Serrano, Susana & Barreneche, Camila & Petrichenko, Ksenia, 2015. "Heating and cooling energy trends and drivers in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 85-98.
    2. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    3. Guo, Jing & Lin, Penghui & Zhang, Limao & Pan, Yue & Xiao, Zhonghua, 2023. "Dynamic adaptive encoder-decoder deep learning networks for multivariate time series forecasting of building energy consumption," Applied Energy, Elsevier, vol. 350(C).
    4. Gao, Hui & Wang, Donglin & Du, Xiaoxu & Zhao, Zhongwei, 2024. "An LCA-BIM integrated model for carbon-emission calculation of prefabricated buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    5. Zhang, Yan & Teoh, Bak Koon & Wu, Maozhi & Chen, Jiayu & Zhang, Limao, 2023. "Data-driven estimation of building energy consumption and GHG emissions using explainable artificial intelligence," Energy, Elsevier, vol. 262(PA).
    6. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    7. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    8. Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    9. Zhang, Limao & Chen, Chao & Zhou, Cheng & Luo, Yongqiang & Wu, Xiaoying, 2025. "Zone-based many-objective building decarbonization considering outdoor temperature and occupation uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    10. Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangjun Xie & Jinhua Cheng & Jianxin Yang & Li Yu & Ji Chai & Deyi Xu, 2025. "Measurement of Building Carbon Emissions and Its Decoupling Relationship with the Construction Land Area in China from 2010 to 2020," Land, MDPI, vol. 14(5), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yanhua & Wang, Ningbo & Shao, Shuangquan & Huang, Congqi & Zhang, Zhentao & Li, Xiaoqiong & Wang, Youdong, 2024. "A review on hybrid physics and data-driven modeling methods applied in air source heat pump systems for energy efficiency improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    2. Zhang, Limao & Chen, Chao & Zhou, Cheng & Luo, Yongqiang & Wu, Xiaoying, 2025. "Zone-based many-objective building decarbonization considering outdoor temperature and occupation uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    3. Tang, Lingfeng & Xie, Haipeng & Wang, Yongguan & Xu, Zhanbo, 2025. "Deeply flexible commercial building HVAC system control: A physics-aware deep learning-embedded MPC approach," Applied Energy, Elsevier, vol. 388(C).
    4. Massimiliano Manfren & Karla M. Gonzalez-Carreon & Patrick A. B. James, 2024. "Interpretable Data-Driven Methods for Building Energy Modelling—A Review of Critical Connections and Gaps," Energies, MDPI, vol. 17(4), pages 1-22, February.
    5. Liang, Xinbin & Zhu, Xu & Chen, Siliang & Jin, Xinqiao & Xiao, Fu & Du, Zhimin, 2023. "Physics-constrained cooperative learning-based reference models for smart management of chillers considering extrapolation scenarios," Applied Energy, Elsevier, vol. 349(C).
    6. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
    7. Xu, Wenjie & Svetozarevic, Bratislav & Di Natale, Loris & Heer, Philipp & Jones, Colin N., 2024. "Data-driven adaptive building thermal controller tuning with constraints: A primal–dual contextual Bayesian optimization approach," Applied Energy, Elsevier, vol. 358(C).
    8. Sun, Luning & Hu, Zehuan & Mae, Masayuki & Imaizumi, Taiji, 2025. "Deep transfer learning strategy based on TimesBlock-CDAN for predicting thermal environment and air conditioner energy consumption in residential buildings," Applied Energy, Elsevier, vol. 381(C).
    9. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    10. Ma, Zhihao & Jiang, Gang & Hu, Yuqing & Chen, Jianli, 2025. "A review of physics-informed machine learning for building energy modeling," Applied Energy, Elsevier, vol. 381(C).
    11. Xiao, Tianqi & You, Fengqi, 2024. "Physically consistent deep learning-based day-ahead energy dispatching and thermal comfort control for grid-interactive communities," Applied Energy, Elsevier, vol. 353(PB).
    12. Zhang, Yan & Teoh, Bak Koon & Zhang, Limao, 2024. "Multi-objective optimization for energy-efficient building design considering urban heat island effects," Applied Energy, Elsevier, vol. 376(PA).
    13. Hu, Guoqing & You, Fengqi, 2023. "An AI framework integrating physics-informed neural network with predictive control for energy-efficient food production in the built environment," Applied Energy, Elsevier, vol. 348(C).
    14. Chung, William & Chen, Yong-Tong, 2024. "A nonparametric least squares regression method for forecasting building energy performance," Applied Energy, Elsevier, vol. 376(PB).
    15. Olamilekan E. Tijani & Sylvain Serra & Patrick Lanusse & Rachid Malti & Hugo Viot & Jean-Michel Reneaume, 2025. "Grey-Box Modelling of District Heating Networks Using Modified LPV Models," Energies, MDPI, vol. 18(7), pages 1-32, March.
    16. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    17. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    19. Jinyi Li & Zhen Liu & Guizhong Han & Peter Demian & Mohamed Osmani, 2024. "The Relationship Between Artificial Intelligence (AI) and Building Information Modeling (BIM) Technologies for Sustainable Building in the Context of Smart Cities," Sustainability, MDPI, vol. 16(24), pages 1-38, December.
    20. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:213:y:2025:i:c:s1364032125001510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.