IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1626-d1619328.html
   My bibliography  Save this article

Grey-Box Modelling of District Heating Networks Using Modified LPV Models

Author

Listed:
  • Olamilekan E. Tijani

    (LaTEP, Universite de Pau et des Pays de l’Adour, 64075 Pau, France)

  • Sylvain Serra

    (LaTEP, Universite de Pau et des Pays de l’Adour, 64075 Pau, France)

  • Patrick Lanusse

    (Universite de Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, 33400 Talence, France)

  • Rachid Malti

    (Universite de Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, 33400 Talence, France)

  • Hugo Viot

    (Nobatek, 67 rue de Mirambeau, 64600 Anglet, France)

  • Jean-Michel Reneaume

    (LaTEP, Universite de Pau et des Pays de l’Adour, 64075 Pau, France)

Abstract

The International Energy Agency (IEA) 2023 report highlights that global energy losses have persisted over the years, with 32% of the energy supply lost in 2022 alone. To mitigate this, this research adopts optimisation to enhance the efficiency of district heating networks (DHNs), a key global energy supply technology. Given the dynamic nature of DHNs and the challenges in predicting disturbances, a dynamic real-time optimisation (DRTO) approach is proposed. However, this research does not implement DRTO; instead, it develops a fast grey-box linear parameter varying (LPV) model for future integration into the DRTO algorithm. A high-fidelity physical model replicating theoretical time delays in pipes serves as a reference for model validation. For a single pipe, the grey-box model achieved a 91.5% fit with an R 2 value of 0.993 and operated 5 times faster than the reference model. At the DHN scale, it captured 98.64% of the reference model’s dynamics, corresponding to an R 2 value of 0.9997, while operating 52 times faster. Low-fidelity physical models (LFPMs) were also developed and validated, proving to be more precise and faster than the grey-box models. This research recommends performing dynamic optimisation with both models to determine which better identifies local minima.

Suggested Citation

  • Olamilekan E. Tijani & Sylvain Serra & Patrick Lanusse & Rachid Malti & Hugo Viot & Jean-Michel Reneaume, 2025. "Grey-Box Modelling of District Heating Networks Using Modified LPV Models," Energies, MDPI, vol. 18(7), pages 1-32, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1626-:d:1619328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1626/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1626/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jinda & Kong, Fansi & Pan, Baoqiang & Zheng, Jinfu & Xue, Puning & Sun, Chunhua & Qi, Chengying, 2024. "Low-order gray-box modeling of heating buildings and the progressive dimension reduction identification of uncertain model parameters," Energy, Elsevier, vol. 294(C).
    2. Duquette, Jean & Rowe, Andrew & Wild, Peter, 2016. "Thermal performance of a steady state physical pipe model for simulating district heating grids with variable flow," Applied Energy, Elsevier, vol. 178(C), pages 383-393.
    3. Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    3. Zhang, Chengyu & Ma, Liangdong & Luo, Zhiwen & Han, Xing & Zhao, Tianyi, 2024. "Forecasting building plug load electricity consumption employing occupant-building interaction input features and bidirectional LSTM with improved swarm intelligent algorithms," Energy, Elsevier, vol. 288(C).
    4. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    6. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    7. Coady, Joe & Duquette, Jean, 2021. "Quantifying the impacts of biomass driven combined heat and power grids in northern rural and remote communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Xin-Rui Liu & Si-Luo Sun & Qiu-Ye Sun & Wei-Yang Zhong, 2020. "Time-Scale Economic Dispatch of Electricity-Heat Integrated System Based on Users’ Thermal Comfort," Energies, MDPI, vol. 13(20), pages 1-27, October.
    9. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration," Applied Energy, Elsevier, vol. 230(C), pages 1126-1139.
    10. Jingjing Zhai & Xiaobei Wu & Zihao Li & Shaojie Zhu & Bo Yang & Haoming Liu, 2021. "Day-Ahead and Intra-Day Collaborative Optimized Operation among Multiple Energy Stations," Energies, MDPI, vol. 14(4), pages 1-33, February.
    11. Khatibi, Mahmood & Rahnama, Samira & Vogler-Finck, Pierre & Dimon Bendtsen, Jan & Afshari, Alireza, 2023. "Towards designing an aggregator to activate the energy flexibility of multi-zone buildings using a hierarchical model-based scheme," Applied Energy, Elsevier, vol. 333(C).
    12. Qin, Xin & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "A generalized quasi-dynamic model for electric-heat coupling integrated energy system with distributed energy resources," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Zhang, Suhan & Gu, Wei & Lu, Hai & Qiu, Haifeng & Lu, Shuai & Wang, Dada & Liang, Junyu & Li, Wenyun, 2021. "Superposition-principle based decoupling method for energy flow calculation in district heating networks," Applied Energy, Elsevier, vol. 295(C).
    14. Li, Yanxue & Wang, Zixuan & Xu, Wenya & Gao, Weijun & Xu, Yang & Xiao, Fu, 2023. "Modeling and energy dynamic control for a ZEH via hybrid model-based deep reinforcement learning," Energy, Elsevier, vol. 277(C).
    15. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration," Applied Energy, Elsevier, vol. 211(C), pages 865-874.
    16. Wang, Hai & Wang, Haiying & Zhu, Tong & Deng, Wanli, 2017. "A novel model for steam transportation considering drainage loss in pipeline networks," Applied Energy, Elsevier, vol. 188(C), pages 178-189.
    17. Cui, Xueyuan & Liu, Shu & Ruan, Guangchun & Wang, Yi, 2024. "Data-driven aggregation of thermal dynamics within building virtual power plants," Applied Energy, Elsevier, vol. 353(PB).
    18. Xie, Zichan & Wang, Haichao & Hua, Pengmin & Lahdelma, Risto, 2023. "Discrete event simulation for dynamic thermal modelling of district heating pipe," Energy, Elsevier, vol. 285(C).
    19. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
    20. Seiya Maki & Satoshi Ohnishi & Minoru Fujii & Naohiro Goto & Lu Sun, 2022. "Using waste to supply steam for industry transition: Selection of target industries through economic evaluation and statistical analysis," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1475-1486, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1626-:d:1619328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.