IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v38y2010i1p197-207.html
   My bibliography  Save this item

The relationship among energy prices and energy consumption in China

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Naiming Xie & Alan Pearman, 2014. "Forecasting energy consumption in China following instigation of an energy-saving policy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 639-659, November.
  2. Hansen, Anders Rhiger, 2018. "Heating homes: Understanding the impact of prices," Energy Policy, Elsevier, vol. 121(C), pages 138-151.
  3. Umar, Bamanga & Alam, Md. Mahmudul & Al-Amin, Abul Quasem, 2021. "Exploring the Contribution of Energy Price to Carbon Emissions in African Countries," OSF Preprints ru4jz, Center for Open Science.
  4. Richard Cebula, 2012. "Recent evidence on determinants of per residential customer electricity consumption in the U.S.: 2001-2005," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 36(4), pages 925-936, October.
  5. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
  6. Zou, Gao Lu, 2012. "The long-term relationships among China's energy consumption sources and adjustments to its renewable energy policy," Energy Policy, Elsevier, vol. 47(C), pages 456-467.
  7. Chai, Jingxia & Wu, Haitao & Hao, Yu, 2022. "Planned economic growth and controlled energy demand: How do regional growth targets affect energy consumption in China?," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
  8. Lin, Boqiang & Long, Houyin, 2014. "How to promote energy conservation in China’s chemical industry," Energy Policy, Elsevier, vol. 73(C), pages 93-102.
  9. Long, Ruyin & Wang, Jiaqi & Chen, Hong & Li, Qianwen & Wu, Meifen & Tan-Soo, Jie-Sheng, 2023. "Applying multilevel structural equation modeling to energy-saving behavior: The interaction of individual- and city-level factors," Energy Policy, Elsevier, vol. 174(C).
  10. Wang, Bing & Kocaoglu, Dundar F. & Daim, Tugrul U. & Yang, Jiting, 2010. "A decision model for energy resource selection in China," Energy Policy, Elsevier, vol. 38(11), pages 7130-7141, November.
  11. Lin, Boqiang & Wang, Ailun, 2015. "Estimating energy conservation potential in China's commercial sector," Energy, Elsevier, vol. 82(C), pages 147-156.
  12. Lin, Boqiang & Xie, Chunping, 2013. "Estimation on oil demand and oil saving potential of China's road transport sector," Energy Policy, Elsevier, vol. 61(C), pages 472-482.
  13. Sebestyénné Szép, Tekla, 2018. "A hatósági árcsökkentés lakossági energiafelhasználásra gyakorolt hatásának vizsgálata indexdekompozícióval [Analysing the effects of utility-cost reduction on household energy consumption, using i," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 185-205.
  14. Lee, Seungtaek & Chong, Wai Oswald, 2016. "Causal relationships of energy consumption, price, and CO2 emissions in the U.S. building sector," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 220-226.
  15. Ioannis Dokas & Georgios Oikonomou & Minas Panagiotidis & Eleftherios Spyromitros, 2023. "Macroeconomic and Uncertainty Shocks’ Effects on Energy Prices: A Comprehensive Literature Review," Energies, MDPI, vol. 16(3), pages 1-35, February.
  16. Zhi Li & Ruyi Yan & Zuo Zhang & Yue Sun & Xiaogang Zhang, 2021. "The Effects of City-County Mergers on Urban Energy Intensity: Empirical Evidence from Chinese Cities," IJERPH, MDPI, vol. 18(16), pages 1-24, August.
  17. Salim, Ruhul & Yao, Yao & Chen, George & Zhang, Lin, 2017. "Can foreign direct investment harness energy consumption in China? A time series investigation," Energy Economics, Elsevier, vol. 66(C), pages 43-53.
  18. Zafeiriou, Eleni & Arabatzis, Garyfallos & Koutroumanidis, Theodoros, 2011. "The fuelwood market in Greece: An empirical approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3008-3018, August.
  19. Oluwatoyin Abidemi Somoye & Mehdi Seraj & Huseyin Ozdeser & Muhammad Mar’I, 2023. "Quantile relationship between financial development, income, price, CO2 emissions and renewable energy consumption: evidence from Nigeria," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-25, December.
  20. Fei, Rilong & Lin, Boqiang, 2017. "Estimates of energy demand and energy saving potential in China's agricultural sector," Energy, Elsevier, vol. 135(C), pages 865-875.
  21. Shumin Jiang & Jingtao Guo & Chen Yang & Zhanwen Ding & Lixin Tian, 2017. "Analysis of the Relative Price in China’s Energy Market for Reducing the Emissions from Consumption," Energies, MDPI, vol. 10(5), pages 1-13, May.
  22. Xiaopeng Guo & Yanan Wei & Jiahai Yuan, 2016. "Will the Steam Coal Price Rebound under the New Economy Normalcy in China?," Energies, MDPI, vol. 9(9), pages 1-13, September.
  23. Xiaopeng Guo & Jiaxing Shi & Dongfang Ren, 2016. "Coal Price Forecasting and Structural Analysis in China," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-7, October.
  24. Li, Ke & Lin, Boqiang, 2015. "How does administrative pricing affect energy consumption and CO2 emissions in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 952-962.
  25. Weiner, Csaba & Szép, Tekla, 2021. "Még egyszer a lakossági hatósági energiaárakról. Egy hungarikum átfogó hatáselemzése [Once again on regulated residential energy prices. A comprehensive impact assessment of a hungarian measure]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(12), pages 1276-1314.
  26. Gang Du & Chuanwang Sun, 2015. "Determinants of Electricity Demand in Nonmetallic Mineral Products Industry: Evidence from a Comparative Study of Japan and China," Sustainability, MDPI, vol. 7(6), pages 1-25, June.
  27. Zhiyu Lv & Xu Zhang, 2023. "Influencing Factor Analysis on Energy-Saving Refrigerator Purchases from the Supply and Demand Sides," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
  28. Lin, Boqiang & Long, Houyin, 2014. "Promoting carbon emissions reduction in China's chemical process industry," Energy, Elsevier, vol. 77(C), pages 822-830.
  29. Zhi Li & Ruyi Yan & Zuo Zhang & Huaping Sun, 2021. "The Effect of Enclave Adjustment on the Urban Energy Intensity in China: Evidence from Wuhan," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
  30. Lin, Boqiang & Wu, Ya & Zhang, Li, 2012. "Electricity saving potential of the power generation industry in China," Energy, Elsevier, vol. 40(1), pages 307-316.
  31. Liang, Sai & Zhang, Tianzhu, 2011. "Interactions of energy technology development and new energy exploitation with water technology development in China," Energy, Elsevier, vol. 36(12), pages 6960-6966.
  32. Jorge Flores-Chamba & Michelle López-Sánchez & Pablo Ponce & Patricia Guerrero-Riofrío & José Álvarez-García, 2019. "Economic and Spatial Determinants of Energy Consumption in the European Union," Energies, MDPI, vol. 12(21), pages 1-15, October.
  33. Li, Wei & Sun, Wen & Li, Guomin & Jin, Baihui & Wu, Wen & Cui, Pengfei & Zhao, Guohao, 2018. "Transmission mechanism between energy prices and carbon emissions using geographically weighted regression," Energy Policy, Elsevier, vol. 115(C), pages 434-442.
  34. Lin, Boqiang & Moubarak, Mohamed & Ouyang, Xiaoling, 2014. "Carbon dioxide emissions and growth of the manufacturing sector: Evidence for China," Energy, Elsevier, vol. 76(C), pages 830-837.
  35. He, Yongxiu & Liu, Yangyang & Wang, Jianhui & Xia, Tian & Zhao, Yushan, 2014. "Low-carbon-oriented dynamic optimization of residential energy pricing in China," Energy, Elsevier, vol. 66(C), pages 610-623.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.