IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v27y1999i9p527-547.html
   My bibliography  Save this item

Appraising renewable energy developments in remote communities: the case of the North Assynt Estate, Scotland

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Klinge Jacobsen, Henrik & Pade, Lise Lotte & Schröder, Sascha Thorsten & Kitzing, Lena, 2014. "Cooperation mechanisms to achieve EU renewable targets," Renewable Energy, Elsevier, vol. 63(C), pages 345-352.
  2. Okkonen, Lasse & Lehtonen, Olli, 2016. "Socio-economic impacts of community wind power projects in Northern Scotland," Renewable Energy, Elsevier, vol. 85(C), pages 826-833.
  3. Kundu, Nobinkhor, 2014. "Sustainable energy for Development: Access to finance on renewable energy and energy efficiency technologies for Bangladesh," MPRA Paper 65154, University Library of Munich, Germany, revised 20 Jun 2014.
  4. Calero, R. & Carta, J. A., 2004. "Action plan for wind energy development in the Canary Islands," Energy Policy, Elsevier, vol. 32(10), pages 1185-1197, July.
  5. Landry, Craig E. & Allen, Tom & Cherry, Todd & Whitehead, John C., 2012. "Wind turbines and coastal recreation demand," Resource and Energy Economics, Elsevier, vol. 34(1), pages 93-111.
  6. Bergmann, E. Ariel & Colombo, Sergio & Hanley, Nick, 2007. "The Social-Environmental Impacts Of Renewable Energy Expansion In Scotland," 81st Annual Conference, April 2-4, 2007, Reading University, UK 7964, Agricultural Economics Society.
  7. Dimitropoulos, Alexandros & Kontoleon, Andreas, 2009. "Assessing the determinants of local acceptability of wind-farm investment: A choice experiment in the Greek Aegean Islands," Energy Policy, Elsevier, vol. 37(5), pages 1842-1854, May.
  8. D׳Souza, Clare & Yiridoe, Emmanuel K., 2014. "Social acceptance of wind energy development and planning in rural communities of Australia: A consumer analysis," Energy Policy, Elsevier, vol. 74(C), pages 262-270.
  9. Gracia, Azucena & Barreiro-Hurlé, Jesús & Pérez y Pérez, Luis, 2012. "Can renewable energy be financed with higher electricity prices? Evidence from a Spanish region," Energy Policy, Elsevier, vol. 50(C), pages 784-794.
  10. Alvarez-Farizo, Begona & Hanley, Nick, 2002. "Using conjoint analysis to quantify public preferences over the environmental impacts of wind farms. An example from Spain," Energy Policy, Elsevier, vol. 30(2), pages 107-116, January.
  11. Andrew D. Krueger & George R. Parsons & Jeremy Firestone, 2011. "Valuing the Visual Disamenity of Offshore Wind Power Projects at Varying Distances from the Shore: An Application on the Delaware Shoreline," Land Economics, University of Wisconsin Press, vol. 87(2), pages 268-283.
  12. Hain, J. J. & Ault, G. W. & Galloway, S. J & Cruden, A. & McDonald, J. R., 2005. "Additional renewable energy growth through small-scale community orientated energy policies," Energy Policy, Elsevier, vol. 33(9), pages 1199-1212, June.
  13. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2018. "Household willingness to pay for expanding fuel cell power generation in Korea: A view from CO2 emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 242-249.
  14. Anabela Botelho & Lígia Costa Pinto & Patricia Sousa, 2013. "Valuing wind farms’ environmental impacts by geographical distance: A contingent valuation study in Portugal," NIMA Working Papers 52, Núcleo de Investigação em Microeconomia Aplicada (NIMA), Universidade do Minho.
  15. Menegaki, Angeliki, 2008. "Valuation for renewable energy: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2422-2437, December.
  16. Xie, Bai-Chen & Zhao, Wei, 2018. "Willingness to pay for green electricity in Tianjin, China: Based on the contingent valuation method," Energy Policy, Elsevier, vol. 114(C), pages 98-107.
  17. Peter Strachan & David Lal, 2004. "Wind Energy Policy, Planning and Management Practice in the UK: Hot Air or a Gathering Storm?," Regional Studies, Taylor & Francis Journals, vol. 38(5), pages 549-569.
  18. Begoña Álvarez-Farizo & Nick Hanley, "undated". "Using conjoint analysis to quantify public preferences over the environmental impacts of wind farms," Working Papers 2001_12, Business School - Economics, University of Glasgow.
  19. Bergmann, Ariel & Hanley, Nick & Wright, Robert, 2006. "Valuing the attributes of renewable energy investments," Energy Policy, Elsevier, vol. 34(9), pages 1004-1014, June.
  20. Soliño, Mario & Farizo, Begoña A. & Campos, Pablo, 2009. "The influence of home-site factors on residents' willingness to pay: An application for power generation from scrubland in Galicia, Spain," Energy Policy, Elsevier, vol. 37(10), pages 4055-4065, October.
  21. Ladenburg, Jacob, 2014. "Dynamic properties of the preferences for renewable energy sources – A wind power experience-based approach," Energy, Elsevier, vol. 76(C), pages 542-551.
  22. Aravena, Claudia & Martinsson, Peter & Scarpa, Riccardo, 2014. "Does money talk? — The effect of a monetary attribute on the marginal values in a choice experiment," Energy Economics, Elsevier, vol. 44(C), pages 483-491.
  23. Stigka, Eleni K. & Paravantis, John A. & Mihalakakou, Giouli K., 2014. "Social acceptance of renewable energy sources: A review of contingent valuation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 100-106.
  24. Jemma Bere & Calvin Jones & Stuart Jones & Max Munday, 2017. "Energy and development in the periphery: A regional perspective on small hydropower projects," Environment and Planning C, , vol. 35(2), pages 355-375, March.
  25. Longo, Alberto & Markandya, Anil & Petrucci, Marta, 2008. "The internalization of externalities in the production of electricity: Willingness to pay for the attributes of a policy for renewable energy," Ecological Economics, Elsevier, vol. 67(1), pages 140-152, August.
  26. Benedek, József & Sebestyén, Tihamér-Tibor & Bartók, Blanka, 2018. "Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 516-535.
  27. Kosenius, Anna-Kaisa & Ollikainen, Markku, 2013. "Valuation of environmental and societal trade-offs of renewable energy sources," Energy Policy, Elsevier, vol. 62(C), pages 1148-1156.
  28. Ribeiro, Fernando & Ferreira, Paula & Araújo, Madalena & Braga, Ana Cristina, 2014. "Public opinion on renewable energy technologies in Portugal," Energy, Elsevier, vol. 69(C), pages 39-50.
  29. Muhammad Aslam Mohd Safari & Nurulkamal Masseran & Alias Jedi & Sohif Mat & Kamaruzzaman Sopian & Azman Bin Abdul Rahim & Azami Zaharim, 2020. "Rural Public Acceptance of Wind and Solar Energy: A Case Study from Mersing, Malaysia," Energies, MDPI, vol. 13(15), pages 1-24, July.
  30. Gianluca Grilli, 2017. "Renewable energy and willingness to pay: Evidences from a meta-analysis," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(1-2), pages 253-271.
  31. Ndebele, Tom, 2020. "Assessing the potential for consumer-driven renewable energy development in deregulated electricity markets dominated by renewables," Energy Policy, Elsevier, vol. 136(C).
  32. Paravantis, John A. & Stigka, Eleni & Mihalakakou, Giouli & Michalena, Evanthie & Hills, Jeremy M. & Dourmas, Vasilis, 2018. "Social acceptance of renewable energy projects: A contingent valuation investigation in Western Greece," Renewable Energy, Elsevier, vol. 123(C), pages 639-651.
  33. Oerlemans, Leon A.G. & Chan, Kai-Ying & Volschenk, Jako, 2016. "Willingness to pay for green electricity: A review of the contingent valuation literature and its sources of error," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 875-885.
  34. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Hydropower externalities: A meta-analysis," Energy Economics, Elsevier, vol. 57(C), pages 66-77.
  35. Marula Tsagkari & Jordi Roca & Phedeas Stephanides, 2022. "Sustainability of local renewable energy projects: A comprehensive framework and an empirical analysis on two islands," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 1155-1168, October.
  36. Papapostolou, Aikaterini & Karakosta, Charikleia & Nikas, Alexandros & Psarras, John, 2017. "Exploring opportunities and risks for RES-E deployment under Cooperation Mechanisms between EU and Western Balkans: A multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 519-530.
  37. Bergmann, Ariel & Colombo, Sergio & Hanley, Nick, 2008. "Rural versus urban preferences for renewable energy developments," Ecological Economics, Elsevier, vol. 65(3), pages 616-625, April.
  38. Bakkensen, Laura & Schuler, Paul, 2020. "A preference for power: Willingness to pay for energy reliability versus fuel type in Vietnam," Energy Policy, Elsevier, vol. 144(C).
  39. Meyerhoff, Jürgen & Ohl, Cornelia & Hartje, Volkmar, 2010. "Landscape externalities from onshore wind power," Energy Policy, Elsevier, vol. 38(1), pages 82-92, January.
  40. Kaldellis, J.K. & Zafirakis, D. & Kaldelli, E.L. & Kavadias, K., 2009. "Cost benefit analysis of a photovoltaic-energy storage electrification solution for remote islands," Renewable Energy, Elsevier, vol. 34(5), pages 1299-1311.
  41. Ma, Chunbo & Rogers, Abbie A. & Kragt, Marit E. & Zhang, Fan & Polyakov, Maksym & Gibson, Fiona & Chalak, Morteza & Pandit, Ram & Tapsuwan, Sorada, 2015. "Consumers’ willingness to pay for renewable energy: A meta-regression analysis," Resource and Energy Economics, Elsevier, vol. 42(C), pages 93-109.
  42. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Wind power externalities: A meta-analysis," Ecological Economics, Elsevier, vol. 127(C), pages 23-36.
  43. Dalia Streimikiene & Tomas Balezentis & Ilona Alisauskaite-Seskiene & Gintare Stankuniene & Zaneta Simanaviciene, 2019. "A Review of Willingness to Pay Studies for Climate Change Mitigation in the Energy Sector," Energies, MDPI, vol. 12(8), pages 1-38, April.
  44. Zhao, Xiaoli & Cai, Qiong & Li, Shujie & Ma, Chunbo, 2018. "Public preferences for biomass electricity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 242-253.
  45. Soliño, Mario & Prada, Albino & Vázquez, María X., 2010. "Designing a forest-energy policy to reduce forest fires in Galicia (Spain): A contingent valuation application," Journal of Forest Economics, Elsevier, vol. 16(3), pages 217-233, August.
  46. Botelho, Anabela & Ferreira, Paula & Lima, Fátima & Pinto, Lígia M. Costa & Sousa, Sara, 2017. "Assessment of the environmental impacts associated with hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 896-904.
  47. Torres Sibille, Ana del Carmen & Cloquell-Ballester, Víctor-Andrés & Cloquell-Ballester, Vicente-Agustín & Darton, Richard, 2009. "Development and validation of a multicriteria indicator for the assessment of objective aesthetic impact of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 40-66, January.
  48. Rogers, J.C. & Simmons, E.A. & Convery, I. & Weatherall, A., 2008. "Public perceptions of opportunities for community-based renewable energy projects," Energy Policy, Elsevier, vol. 36(11), pages 4217-4226, November.
  49. García, Jorge H. & Cherry, Todd L. & Kallbekken, Steffen & Torvanger, Asbjørn, 2016. "Willingness to accept local wind energy development: Does the compensation mechanism matter?," Energy Policy, Elsevier, vol. 99(C), pages 165-173.
  50. Soliño, Mario & Vázquez, María X. & Prada, Albino, 2009. "Social demand for electricity from forest biomass in Spain: Does payment periodicity affect the willingness to pay?," Energy Policy, Elsevier, vol. 37(2), pages 531-540, February.
  51. Berka, Anna L. & Harnmeijer, Jelte & Roberts, Deborah & Phimister, Euan & Msika, Joshua, 2017. "A comparative analysis of the costs of onshore wind energy: Is there a case for community-specific policy support?," Energy Policy, Elsevier, vol. 106(C), pages 394-403.
  52. Aravena, Claudia & Hutchinson, W. George & Longo, Alberto, 2012. "Environmental pricing of externalities from different sources of electricity generation in Chile," Energy Economics, Elsevier, vol. 34(4), pages 1214-1225.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.