IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v120y2018icp365-381.html
   My bibliography  Save this item

How to peak carbon emissions in China's power sector: A regional perspective

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
  2. Xiao, Jin & Li, Guohao & Xie, Ling & Wang, Shouyang & Yu, Lean, 2021. "Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission," Energy Policy, Elsevier, vol. 150(C).
  3. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
  4. Liu, Junling & Wang, Ke & Zou, Ji & Kong, Ying, 2019. "The implications of coal consumption in the power sector for China’s CO2 peaking target," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  5. Yongyou Nie & Yunhuan Gao & He He, 2022. "Modelling Structural Effect and Linkage on Carbon Emissions in China: An Environmentally Extended Semi-Closed Ghosh Input–Output Model," Energies, MDPI, vol. 15(17), pages 1-17, August.
  6. Yu, Biying & Zhao, Zihao & Zhang, Shuai & An, Runying & Chen, Jingming & Li, Ru & Zhao, Guangpu, 2021. "Technological development pathway for a low-carbon primary aluminum industry in China," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
  7. Liangpeng Wu & Qingyuan Zhu, 2021. "Impacts of the carbon emission trading system on China’s carbon emission peak: a new data-driven approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2487-2515, July.
  8. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
  9. Qi Chen & Yibo Yan & Xu Zhang & Jian Chen, 2022. "Impact of Subjective and Objective Factors on Subway Travel Behavior: Spatial Differentiation," IJERPH, MDPI, vol. 19(23), pages 1-17, November.
  10. Yuanying Chi & Wenbing Zhou & Songlin Tang & Yu Hu, 2022. "Driving Factors of CO 2 Emissions in China’s Power Industry: Relative Importance Analysis Based on Spatial Durbin Model," Energies, MDPI, vol. 15(7), pages 1-15, April.
  11. Wu, C.B. & Guan, P.B. & Zhong, L.N. & Lv, J. & Hu, X.F. & Huang, G.H. & Li, C.C., 2020. "An optimized low-carbon production planning model for power industry in coal-dependent regions - A case study of Shandong, China," Energy, Elsevier, vol. 192(C).
  12. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
  13. Tingru Yang & Wenling Liu, 2019. "Health Effects of Energy Intensive Sectors and the Potential Health Co-Benefits of a Low Carbon Industrial Transition in China," IJERPH, MDPI, vol. 16(17), pages 1-18, August.
  14. Tang, Bao-Jun & Guo, Yang-Yang & Yu, Biying & Harvey, L.D. Danny, 2021. "Pathways for decarbonizing China’s building sector under global warming thresholds," Applied Energy, Elsevier, vol. 298(C).
  15. Zhang, Haonan & Zhang, Xingping & Yuan, Jiahai, 2020. "Transition of China's power sector consistent with Paris Agreement into 2050: Pathways and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  16. Xian’en Wang & Tingyu Hu & Junnian Song & Haiyan Duan, 2022. "Tracking Key Industrial Sectors for CO 2 Mitigation through the Driving Effects: An Attribution Analysis," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
  17. Jing-Ming Chen & Biying Yu & Yi-Ming Wei, 2019. "CO2 emissions accounting for the chemical industry: an empirical analysis for China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1327-1343, December.
  18. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
  19. Yu, Bolin & Fang, Debin & Xiao, Kun & Pan, Yuling, 2023. "Drivers of renewable energy penetration and its role in power sector's deep decarbonization towards carbon peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
  20. Li, Dezhi & Huang, Guanying & Zhu, Shiyao & Chen, Long & Wang, Jiangbo, 2021. "How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  21. Lyu, Yizheng & Gao, Hanbo & Yan, Kun & Liu, Yingjie & Tian, Jinping & Chen, Lyujun & Wan, Mei, 2022. "Carbon peaking strategies for industrial parks: Model development and applications in China," Applied Energy, Elsevier, vol. 322(C).
  22. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
  23. Feng Wang & Changhai Gao & Wulin Zhang & Danwen Huang, 2021. "Industrial Structure Optimization and Low-Carbon Transformation of Chinese Industry Based on the Forcing Mechanism of CO 2 Emission Peak Target," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
  24. Wang, Yihan & Wen, Zongguo & Cao, Xin & Dinga, Christian Doh, 2022. "Is information and communications technology effective for industrial energy conservation and emission reduction? Evidence from three energy-intensive industries in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  25. Zhang, Pengfei & Cai, Wenqiu & Yao, Mingtao & Wang, Zhiyou & Yang, Luzhen & Wei, Wendong, 2020. "Urban carbon emissions associated with electricity consumption in Beijing and the driving factors," Applied Energy, Elsevier, vol. 275(C).
  26. Qi Zhang & Ting Xiang & Wei Zhang & Heming Wang & Jing An & Xiuping Li & Bing Xue, 2022. "Co‐benefits analysis of industrial symbiosis in China's key industries: Case of steel, cement, and power industries," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1714-1727, October.
  27. Wang, Yongpei & Li, Jun, 2019. "Spatial spillover effect of non-fossil fuel power generation on carbon dioxide emissions across China's provinces," Renewable Energy, Elsevier, vol. 136(C), pages 317-330.
  28. Ru Li & Sigit Perdana & Marc Vielle, 2021. "Potential integration of Chinese and European emissions trading market: welfare distribution analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(5), pages 1-28, June.
  29. Huaibo Yang & Chao Shi & Jianbo Li & Tianran Liu & Youwei Li & Yao Wang & Yueying Yang, 2022. "Has the Inter-Regional Power Transmission Promoted Economic Development? A Quantitative Assessment in China," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
  30. Guangyue Xu & Juanjuan Li & Peter M. Schwarz & Hualiu Yang & Huiying Chang, 2022. "Rural financial development and achieving an agricultural carbon emissions peak: an empirical analysis of Henan Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12936-12962, November.
  31. Tang, Bao-Jun & Li, Xiao-Yi & Yu, Biying & Wei, Yi-Ming, 2019. "Sustainable development pathway for intercity passenger transport: A case study of China," Applied Energy, Elsevier, vol. 254(C).
  32. Nie, Liang & Zhang, ZhongXiang, 2023. "Is high-speed rail heading towards a low-carbon industry? Evidence from a quasi-natural experiment in China," Resource and Energy Economics, Elsevier, vol. 72(C).
  33. Wang, Yihan & Chen, Chen & Tao, Yuan & Wen, Zongguo & Chen, Bin & Zhang, Hong, 2019. "A many-objective optimization of industrial environmental management using NSGA-III: A case of China’s iron and steel industry," Applied Energy, Elsevier, vol. 242(C), pages 46-56.
  34. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
  35. Chen, Han & Chen, Wenying, 2019. "Potential impact of shifting coal to gas and electricity for building sectors in 28 major northern cities of China," Applied Energy, Elsevier, vol. 236(C), pages 1049-1061.
  36. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2019. "Determining China's CO2 emissions peak with a dynamic nonlinear artificial neural network approach and scenario analysis," Energy Policy, Elsevier, vol. 128(C), pages 752-762.
  37. Chen, Han & Yang, Lei & Chen, Wenying, 2020. "Modelling national, provincial and city-level low-carbon energy transformation pathways," Energy Policy, Elsevier, vol. 137(C).
  38. Wang, Yongpei & Yan, Weilong & Komonpipat, Supak, 2019. "How does the capacity utilization of thermal power generation affect pollutant emissions? Evidence from the panel data of China's provinces," Energy Policy, Elsevier, vol. 132(C), pages 440-451.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.