IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v51y2015icp88-98.html
   My bibliography  Save this item

A deterministic parametric metafrontier Luenberger indicator for measuring environmentally-sensitive productivity growth: A Korean fossil-fuel power case

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sicen Liu & Xiaodong Chen & Zhiyang Shen & Tomas Baležentis, 2022. "Industrial energy consumption and pollutant emissions: Combined decomposition of relative performance and absolute changes," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3454-3469, November.
  2. Alam, Tabish & Kim, Man-Hoe, 2018. "A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 813-839.
  3. Yang, Jun & Cheng, Jixin & Zou, Ran & Geng, Zhifei, 2021. "Industrial SO2 technical efficiency, reduction potential and technology heterogeneities of China's prefecture-level cities: A multi-hierarchy meta-frontier parametric approach," Energy Economics, Elsevier, vol. 104(C).
  4. Du, Kerui & Li, Jianglong, 2019. "Towards a green world: How do green technology innovations affect total-factor carbon productivity," Energy Policy, Elsevier, vol. 131(C), pages 240-250.
  5. Kumar, Surender & Jain, Rakesh Kumar, 2019. "Carbon-sensitive meta-productivity growth and technological gap: An empirical analysis of Indian thermal power sector," Energy Economics, Elsevier, vol. 81(C), pages 104-116.
  6. Xiao Liu & Yancai Zhang & Yingying Li, 2022. "How Does Energy Consumption and Economic Development Affect Carbon Emissions? A Multi-Process Decomposition Framework," Energies, MDPI, vol. 15(23), pages 1-16, November.
  7. Yu, Yanni & Qian, Tao & Du, Limin, 2017. "Carbon productivity growth, technological innovation, and technology gap change of coal-fired power plants in China," Energy Policy, Elsevier, vol. 109(C), pages 479-487.
  8. Jin, Qianying & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2020. "Metafrontier productivity indices: Questioning the common convexification strategy," European Journal of Operational Research, Elsevier, vol. 283(2), pages 737-747.
  9. Xingming Li & Pengfei Shi & Yazhi Han & Aimin Deng & Duan Liu, 2020. "Measurement and Spatial Variation of Green Total Factor Productivity of the Tourism Industry in China," IJERPH, MDPI, vol. 17(4), pages 1-14, February.
  10. Chao Qi & Yongrok Choi, 2019. "A Study of the Feasibility of International ETS Cooperation between Shanghai and Korea from Environmental Efficiency and CO 2 Marginal Abatement Cost Perspectives," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
  11. Fang, Chuandi & Cheng, Jinhua & Zhu, Yongguang & Chen, Jiahao & Peng, Xinjie, 2021. "Green total factor productivity of extractive industries in China: An explanation from technology heterogeneity," Resources Policy, Elsevier, vol. 70(C).
  12. Yang, Jun & Zou, Ran & Cheng, Jixin & Geng, Zhifei & Li, Qi, 2023. "Environmental technical efficiency and its dynamic evolution in China's industry: A resource endowment perspective," Resources Policy, Elsevier, vol. 82(C).
  13. Du, Minzhe & Liu, Yunxiao & Wang, Bing & Lee, Myunghun & Zhang, Ning, 2021. "The sources of regulated productivity in Chinese power plants: An estimation of the restricted cost function combined with DEA approach," Energy Economics, Elsevier, vol. 100(C).
  14. Du, Limin & Hanley, Aoife & Zhang, Ning, 2016. "Environmental technical efficiency, technology gap and shadow price of coal-fuelled power plants in China: A parametric meta-frontier analysis," Resource and Energy Economics, Elsevier, vol. 43(C), pages 14-32.
  15. Miao, Zhuang & Chen, Xiaodong & Baležentis, Tomas, 2021. "Improving energy use and mitigating pollutant emissions across “Three Regions and Ten Urban Agglomerations”: A city-level productivity growth decomposition," Applied Energy, Elsevier, vol. 283(C).
  16. Li, Ding & Gao, Ming & Hou, Wenxuan & Song, Malin & Chen, Jiandong, 2020. "A modified and improved method to measure economy-wide carbon rebound effects based on the PDA-MMI approach," Energy Policy, Elsevier, vol. 147(C).
  17. Wei, Yigang & Li, Yan & Wu, Meiyu & Li, Yingbo, 2019. "The decomposition of total-factor CO2 emission efficiency of 97 contracting countries in Paris Agreement," Energy Economics, Elsevier, vol. 78(C), pages 365-378.
  18. Chuandi Fang & Yue Yuan & Jiahao Chen & Da Gao & Jing Peng, 2024. "Examination of Green Productivity in China’s Mining Industry: An In-Depth Exploration of the Role and Impact of Digital Economy," Sustainability, MDPI, vol. 16(1), pages 1-21, January.
  19. Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
  20. Yang, Zhenbing & Fan, Meiting & Shao, Shuai & Yang, Lili, 2017. "Does carbon intensity constraint policy improve industrial green production performance in China? A quasi-DID analysis," Energy Economics, Elsevier, vol. 68(C), pages 271-282.
  21. Lizhan Cao & Zhongying Qi & Junxia Ren, 2017. "China’s Industrial Total-Factor Energy Productivity Growth at Sub-Industry Level: A Two-Step Stochastic Metafrontier Malmquist Index Approach," Sustainability, MDPI, vol. 9(8), pages 1-22, August.
  22. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).
  23. Lan-Bing Li & Cong-Cong Zhang & Jin-Li Hu & Ching-Ren Chiu, 2021. "Disaggregate productivity growth sources of regional industries in China," Empirical Economics, Springer, vol. 60(3), pages 1531-1557, March.
  24. Zha, Donglan & Yang, Guanglei & Wang, Qunwei, 2019. "Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method," Energy Economics, Elsevier, vol. 84(C).
  25. Lin, Boqiang & Xu, Mengmeng, 2018. "Regional differences on CO2 emission efficiency in metallurgical industry of China," Energy Policy, Elsevier, vol. 120(C), pages 302-311.
  26. Qu, Jianying & Li, Ke & Ye, Ze & Shao, Shuai, 2022. "The impact of differential power pricing policy on firm productivity in China: Evidence from iron and steel firms," Journal of Asian Economics, Elsevier, vol. 80(C).
  27. Yongrok Choi & Chao Qi, 2019. "Is South Korea’s Emission Trading Scheme Effective? An Analysis Based on the Marginal Abatement Cost of Coal-Fueled Power Plants," Sustainability, MDPI, vol. 11(9), pages 1-12, April.
  28. Sami Jarboui, 2022. "Operational and environmental efficiency of U.S. oil and gas companies towards energy transition policies: A comparative empirical analysis," Australian Economic Papers, Wiley Blackwell, vol. 61(2), pages 234-257, June.
  29. Yu, Yantuan & Huang, Jianhuan & Zhang, Ning, 2019. "Modeling the eco-efficiency of Chinese prefecture-level cities with regional heterogeneities: A comparative perspective," Ecological Modelling, Elsevier, vol. 402(C), pages 1-17.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.