IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v24y2002i4p305-318.html
   My bibliography  Save this item

Allocative inefficiency and the capital-energy controversy

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ouyang, Xiaoling & Sun, Chuanwang, 2015. "Energy savings potential in China's industrial sector: From the perspectives of factor price distortion and allocative inefficiency," Energy Economics, Elsevier, vol. 48(C), pages 117-126.
  2. Floros, Nikolaos & Vlachou, Andriana, 2005. "Energy demand and energy-related CO2 emissions in Greek manufacturing: Assessing the impact of a carbon tax," Energy Economics, Elsevier, vol. 27(3), pages 387-413, May.
  3. Al-Hadi, Azrina Abdullah & Bitzan, John & Peoples, James, 2019. "Input allocation efficiency in the United States railroad industry: Changing work rules and managerial flexibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 281-296.
  4. Lucas Bretschger, 2013. "Population Growth and Natural-Resource Scarcity: Long-Run Development under Seemingly Unfavorable Conditions," Scandinavian Journal of Economics, Wiley Blackwell, vol. 115(3), pages 722-755, July.
  5. Ma, Hengyun & Oxley, Les & Gibson, John & Kim, Bonggeun, 2008. "China's energy economy: Technical change, factor demand and interfactor/interfuel substitution," Energy Economics, Elsevier, vol. 30(5), pages 2167-2183, September.
  6. Obeng, K. & Sakano, R., 2020. "Effects of government regulations and input subsidies on cost efficiency: A decomposition approach," Transport Policy, Elsevier, vol. 91(C), pages 95-107.
  7. Zha, DongLan & Zhou, DeQun & Ding, Ning, 2012. "The determinants of aggregated electricity intensity in China," Applied Energy, Elsevier, vol. 97(C), pages 150-156.
  8. Bernstein, Ronald & Madlener, Reinhard, 2015. "Short- and long-run electricity demand elasticities at the subsectoral level: A cointegration analysis for German manufacturing industries," Energy Economics, Elsevier, vol. 48(C), pages 178-187.
  9. Bretschger, Lucas, 2020. "Malthus in the light of climate change," European Economic Review, Elsevier, vol. 127(C).
  10. Khiabani, Nasser & Hasani, Karim, 2010. "Technical and allocative inefficiencies and factor elasticities of substitution: An analysis of energy waste in Iran's manufacturing," Energy Economics, Elsevier, vol. 32(5), pages 1182-1190, September.
  11. Hossein Mirshojaeian Hosseini & Shinji Kaneko, 2013. "Fuel Conservation Effect of Energy Subsidy Reform in Iran," Working Papers 3-1, Faculty of Economics,University of Tehran.Tehran,Iran.
  12. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
  13. Hossein Mirshojaeian Hosseini & Shinji Kaneko, 2013. "Fuel Conservation Effect of Energy Subsidy Reform in Iran," IDEC DP2 Series 3-1, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).
  14. Tan, Ruipeng & Lin, Boqiang & Liu, Xiying, 2019. "Impacts of eliminating the factor distortions on energy efficiency—A focus on China's secondary industry," Energy, Elsevier, vol. 183(C), pages 693-701.
  15. Lotfali Agheli, 2015. "Estimating the Demand for Diesel in Agriculture Sector of Iran," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 660-667.
  16. Burki, Abid A. & Khan, Mahmood-ul-Hasan, 2004. "Effects of allocative inefficiency on resource allocation and energy substitution in Pakistan's manufacturing," Energy Economics, Elsevier, vol. 26(3), pages 371-388, May.
  17. Agnolucci, Paolo & De Lipsis, Vincenzo & Arvanitopoulos, Theodoros, 2017. "Modelling UK sub-sector industrial energy demand," Energy Economics, Elsevier, vol. 67(C), pages 366-374.
  18. Xu, Mengmeng & Lin, Boqiang, 2022. "Energy efficiency gains from distortion mitigation: A perspective on the metallurgical industry," Resources Policy, Elsevier, vol. 77(C).
  19. Bentzen, Jan, 2004. "Estimating the rebound effect in US manufacturing energy consumption," Energy Economics, Elsevier, vol. 26(1), pages 123-134, January.
  20. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Substitution possibilities and determinants of energy intensity for China," Energy Policy, Elsevier, vol. 37(5), pages 1793-1804, May.
  21. Khalid, Waqar & Özdeşer, Hüseyin & Jalil, Abdul, 2021. "An empirical analysis of inter-factor and inter-fuel substitution in the energy sector of Pakistan," Renewable Energy, Elsevier, vol. 177(C), pages 953-966.
  22. Agnolucci, Paolo, 2009. "The effect of the German and British environmental taxation reforms: A simple assessment," Energy Policy, Elsevier, vol. 37(8), pages 3043-3051, August.
  23. Gao, Kang & Yuan, Yijun, 2022. "Does market-oriented reform make the industrial sector “Greener” in China? Fresh evidence from the perspective of capital-labor-energy market distortions," Energy, Elsevier, vol. 254(PA).
  24. Polemis, Michael. L., 2007. "Modeling industrial energy demand in Greece using cointegration techniques," Energy Policy, Elsevier, vol. 35(8), pages 4039-4050, August.
  25. Smyth, Russell & Narayan, Paresh Kumar & Shi, Hongliang, 2011. "Substitution between energy and classical factor inputs in the Chinese steel sector," Applied Energy, Elsevier, vol. 88(1), pages 361-367, January.
  26. Mirshojaeian Hosseini , Hossein & Majed , Vahid & Kaneko , Shinji, 2015. "The Effects of Energy Subsidy Reform on Fuel Demand in Iran," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 10(2), pages 23-47, January.
  27. Wesseh, Presley K. & Lin, Boqiang & Appiah, Michael Owusu, 2013. "Delving into Liberia's energy economy: Technical change, inter-factor and inter-fuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 122-130.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.