IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v15y1993i2p131-136.html
   My bibliography  Save this item

Industry energy use and structural change : A case study of The People's Republic of China

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zheng, Yingmei & Qi, Jianhong & Chen, Xiaoliang, 2011. "The effect of increasing exports on industrial energy intensity in China," Energy Policy, Elsevier, vol. 39(5), pages 2688-2698, May.
  2. Xingang, Zhao & Pingkuo, Liu, 2013. "Substitution among energy sources: An empirical analysis on biomass energy for fossil fuel of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 194-202.
  3. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2006. "Dynamics of energy-related CO2 emissions in China during 1980 to 2002: The relative importance of energy supply-side and demand-side effects," Energy Policy, Elsevier, vol. 34(18), pages 3549-3572, December.
  4. Zhang, Zhong Xiang, 2001. "Why has the energy intensity fallen in China's industrial sector in the 1990s?: the relative importance of structural change and intensity change," CDS Research Reports 200111, University of Groningen, Centre for Development Studies (CDS).
  5. Zhang, ZhongXiang, 2003. "Why did the energy intensity fall in China's industrial sector in the 1990s? The relative importance of structural change and intensity change," Energy Economics, Elsevier, vol. 25(6), pages 625-638, November.
  6. Li, Aijun & Hu, Mingming & Wang, Mingjian & Cao, Yinxue, 2016. "Energy consumption and CO2 emissions in Eastern and Central China: A temporal and a cross-regional decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 284-297.
  7. Yang, Guangfei & Li, Wenli & Wang, Jianliang & Zhang, Dongqing, 2016. "A comparative study on the influential factors of China's provincial energy intensity," Energy Policy, Elsevier, vol. 88(C), pages 74-85.
  8. Wu, Yanrui, 2012. "Energy intensity and its determinants in China's regional economies," Energy Policy, Elsevier, vol. 41(C), pages 703-711.
  9. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
  10. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
  11. Lim, Hea-Jin & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2009. "Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis," Energy Policy, Elsevier, vol. 37(2), pages 686-698, February.
  12. Fang, Zheng & Chen, Yang, 2017. "Human capital and energy in economic growth – Evidence from Chinese provincial data," Energy Economics, Elsevier, vol. 68(C), pages 340-358.
  13. repec:dgr:rugccs:200105 is not listed on IDEAS
  14. Chenyu Dai & Fengliang Liu, 2023. "Impact of Energy Productivity and Industrial Structural Change on Energy Intensity in China: Analysis Based on Provincial Panel Data," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
  15. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
  16. Siqi Zheng & Rui Wang & Edward L. Glaeser & Matthew E. Kahn, 2011. "The greenness of China: household carbon dioxide emissions and urban development," Journal of Economic Geography, Oxford University Press, vol. 11(5), pages 761-792, September.
  17. Moomaw, William R, 1996. "Industrial emissions of greenhouse gases," Energy Policy, Elsevier, vol. 24(10-11), pages 951-968.
  18. Jing Cao & Mun S. Ho, 2010. "Changes in China's Energy Intensity: Origins and Implications for Long-Term Carbon Emissions and Climate Policies," EEPSEA Research Report rr2010126, Economy and Environment Program for Southeast Asia (EEPSEA), revised Dec 2010.
  19. Lizhan Cao & Hui Wang, 2022. "The Slowdown in China’s Energy Consumption Growth in the “New Normal” Stage: From Both National and Regional Perspectives," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
  20. Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).
  21. Xiaohua Song & Caiping Zhao & Jingjing Han & Qi Zhang & Jinpeng Liu & Yuanying Chi, 2020. "Measurement and Influencing Factors Research of the Energy and Power Efficiency in China: Based on the Supply-Side Structural Reform Perspective," Sustainability, MDPI, vol. 12(9), pages 1-23, May.
  22. Liao, Hua & Fan, Ying & Wei, Yi-Ming, 2007. "What induced China's energy intensity to fluctuate: 1997-2006?," Energy Policy, Elsevier, vol. 35(9), pages 4640-4649, September.
  23. Crompton, Paul & Wu, Yanrui, 2005. "Energy consumption in China: past trends and future directions," Energy Economics, Elsevier, vol. 27(1), pages 195-208, January.
  24. Shrestha, Ram M. & Timilsina, Govinda R., 1996. "Factors affecting CO2 intensities of power sector in Asia: A Divisia decomposition analysis," Energy Economics, Elsevier, vol. 18(4), pages 283-293, October.
  25. Nag, Barnali & Parikh, Jyoti, 2000. "Indicators of carbon emission intensity from commercial energy use in India," Energy Economics, Elsevier, vol. 22(4), pages 441-461, August.
  26. Ma, Hengyun & Oxley, Les & Gibson, John, 2010. "China's energy economy: A survey of the literature," Economic Systems, Elsevier, vol. 34(2), pages 105-132, June.
  27. Fang, Zheng & Chen, Yang, 2017. "Human capital, energy, and economic development – Evidence from Chinese provincial data," RIEI Working Papers 2017-03, Xi'an Jiaotong-Liverpool University, Research Institute for Economic Integration.
  28. Yu, Mingchao & Yu, Ran & Tang, Yuxuan & Liu, Zhen, 2020. "Empirical study on the impact of China's metro services on urban transportation energy consumption," Research in Transportation Economics, Elsevier, vol. 80(C).
  29. Tae Jung & Tae Park, 2000. "Structural Change of the Manufacturing Sector in Korea: Measurement of Real Energy Intensity and CO2 Emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 5(3), pages 221-238, September.
  30. Chai, Jian & Guo, Ju-E & Wang, Shou-Yang & Lai, Kin Keung, 2009. "Why does energy intensity fluctuate in China?," Energy Policy, Elsevier, vol. 37(12), pages 5717-5731, December.
  31. Chen, Feng-Wen & Tan, Yulu & Chen, Fengzhang & Wu, Yong-Qiu, 2021. "Enhancing or suppressing: The effect of labor costs on energy intensity in emerging economies," Energy, Elsevier, vol. 214(C).
  32. Zhao, Xiaoli & Ma, Chunbo & Hong, Dongyue, 2010. "Why did China's energy intensity increase during 1998-2006: Decomposition and policy analysis," Energy Policy, Elsevier, vol. 38(3), pages 1379-1388, March.
  33. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
  34. Jin Zhang and David C. Broadstock, 2016. "The Causality between Energy Consumption and Economic Growth for China in a Time-varying Framework," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
  35. Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
  36. Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
  37. Lin, Boqiang & Long, Houyin, 2016. "Emissions reduction in China׳s chemical industry – Based on LMDI," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1348-1355.
  38. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
  39. Shaista Alam & Mohammad Sabihuddin Butt, 2001. "Assessing Energy Consumption and Energy Intensity Changes in Pakistan: An Application of Complete Decomposition Model," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 40(2), pages 135-147.
  40. Lin, Boqiang & Du, Kerui, 2013. "Technology gap and China's regional energy efficiency: A parametric metafrontier approach," Energy Economics, Elsevier, vol. 40(C), pages 529-536.
  41. Sinton, Jonathan E & Levine, Mark D & Qingyi, Wang, 1998. "Energy efficiency in China: accomplishments and challenges," Energy Policy, Elsevier, vol. 26(11), pages 813-829, September.
  42. Li, Juan & Ma, Shaoqi & Qu, Yi & Wang, Jiamin, 2023. "The impact of artificial intelligence on firms’ energy and resource efficiency: Empirical evidence from China," Resources Policy, Elsevier, vol. 82(C).
  43. Fan, Ying & Xia, Yan, 2012. "Exploring energy consumption and demand in China," Energy, Elsevier, vol. 40(1), pages 23-30.
  44. Margarida R. Alves & Victor Moutinho, 2013. "Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors," CEFAGE-UE Working Papers 2013_10, University of Evora, CEFAGE-UE (Portugal).
  45. Zhang, Haiyan & Lahr, Michael L., 2014. "China's energy consumption change from 1987 to 2007: A multi-regional structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 682-693.
  46. repec:dgr:rugcds:200111 is not listed on IDEAS
  47. Wu, Haitao & Xue, Yan & Hao, Yu & Ren, Siyu, 2021. "How does internet development affect energy-saving and emission reduction? Evidence from China," Energy Economics, Elsevier, vol. 103(C).
  48. Julien Allaire, 2006. "Industrie lourde et intensité énergétique de la croissance chinoise," Post-Print halshs-00007931, HAL.
  49. Xu, X.Y. & Ang, B.W., 2014. "Multilevel index decomposition analysis: Approaches and application," Energy Economics, Elsevier, vol. 44(C), pages 375-382.
  50. Ma, Chunbo, 2010. "Account for sector heterogeneity in China's energy consumption: Sector price indices vs. GDP deflator," Energy Economics, Elsevier, vol. 32(1), pages 24-29, January.
  51. An, Hui & Xu, Jianjun & Ma, Xuejiao, 2020. "Does technological progress and industrial structure reduce electricity consumption? Evidence from spatial and heterogeneity analysis," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 206-220.
  52. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
  53. Jiang, Xuemei & Zhu, Kunfu & Green, Christopher, 2015. "The energy efficiency advantage of foreign-invested enterprises in China and the role of structural differences," China Economic Review, Elsevier, vol. 34(C), pages 225-235.
  54. Hongjun Lei & Xunfeng Xia & Changjia Li & Beidou Xi, 2012. "Decomposition Analysis of Wastewater Pollutant Discharges in Industrial Sectors of China (2001–2009) Using the LMDI I Method," IJERPH, MDPI, vol. 9(6), pages 1-15, June.
  55. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
  56. Moutinho, Victor & Robaina-Alves, Margarita & Mota, Jorge, 2014. "Carbon dioxide emissions intensity of Portuguese industry and energy sectors: A convergence analysis and econometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 438-449.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.