IDEAS home Printed from https://ideas.repec.org/r/eee/eecrev/v69y2014icp18-39.html

Fueling growth when oil peaks: Directed technological change and the limits to efficiency

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Rozenberg, Julie & Vogt-Schilb, Adrien & Hallegatte, Stephane, 2020. "Instrument choice and stranded assets in the transition to clean capital," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
  2. Jan Witajewski-Baltvilks, 2018. "Green Growth and Taste Heterogeneity," IBS Working Papers 07/2018, Instytut Badan Strukturalnych.
  3. Julie Rozenberg & Adrien Vogt-Schilb & Stephane Hallegatte, 2017. "Instrument Choice and Stranded Assets in the Transition to Clean Capital," IDB Publications (Working Papers) 98039, Inter-American Development Bank.
  4. Bergmann, Tobias & Kalkuhl, Matthias, 2025. "Decoupling economic growth from energy use: The role of energy intensity in an endogenous growth model," Ecological Economics, Elsevier, vol. 230(C).
  5. Oskar Lecuyer & Adrien Vogt-Schilb, 2013. "Assessing and ordering investments in polluting fossil-fueled and zero-carbon capital," CIRED Working Papers hal-00850680, HAL.
  6. Jan Witajewski-Baltvilks & Carolyn Fischer, 2023. "Green Innovation and Economic Growth in a North–South Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(3), pages 615-648, August.
  7. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2017. "Induced technological change and energy efficiency improvements," Energy Economics, Elsevier, vol. 68(S1), pages 17-32.
  8. Hou, Zheng & Roseta-Palma, Catarina & Ramalho, Joaquim José dos Santos, 2021. "Does directed technological change favor energy? Firm-level evidence from Portugal," Energy Economics, Elsevier, vol. 98(C).
  9. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
  10. Liu, Yi & Matsumura, Toshihiro, 2025. "Fuel diversification among firms and common ownership," MPRA Paper 125747, University Library of Munich, Germany.
  11. Sjak Smulders & Michael Toman & Cees Withagen, 2014. "Growth Theory and “Green Growthâ€," OxCarre Working Papers 135, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
  12. Gerard van der Meijden & Sjak Smulders, 2014. "Carbon Lock-In: The Role of Expectations," Tinbergen Institute Discussion Papers 14-100/VIII, Tinbergen Institute, revised 14 Jul 2016.
  13. Francesco Macheda, 2022. "Industrial Policies and State-Owned Enterprises: The Foundations of China’s Path Towards Decarbonization," L'industria, Società editrice il Mulino, issue 4, pages 581-619.
  14. David Hémous & Morten Olsen, 2021. "Directed Technical Change in Labor and Environmental Economics," Annual Review of Economics, Annual Reviews, vol. 13(1), pages 571-597, August.
  15. Antosiewicz, Marek & Witajewski-Baltvilks, Jan, 2021. "Short- and long-run dynamics of energy demand," Energy Economics, Elsevier, vol. 103(C).
  16. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
  17. Kerner, Philip & Wendler, Tobias, 2022. "Convergence in resource productivity," World Development, Elsevier, vol. 158(C).
  18. Jin, Wei & Zhang, ZhongXiang, "undated". "Capital Accumulation, GreeParadox, and Stranded Assets: An Endogenous Growth Perspective," ETA: Economic Theory and Applications 281286, Fondazione Eni Enrico Mattei (FEEM).
  19. Simone Marsiglio & Alberto Ansuategi & Maria Carmen Gallastegui, 2016. "The Environmental Kuznets Curve and the Structural Change Hypothesis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(2), pages 265-288, February.
  20. Kerner, Philip & Kalthaus, Martin & Wendler, Tobias, 2023. "Economic growth and the use of natural resources: assessing the moderating role of institutions," Energy Economics, Elsevier, vol. 126(C).
  21. André Grimaud & Luc Rouge, 2025. "Technology Shocks, Directed Technical Progress and Climate Change," Working Papers hal-05022723, HAL.
  22. Kruse-Andersen, Peter K., 2025. "Directed technical change and economic growth effects of environmental policy," Energy Economics, Elsevier, vol. 147(C).
  23. Peter K. Kruse-Andersen, 2019. "Directed Technical Change, Environmental Sustainability, and Population Growth," Discussion Papers 19-12, University of Copenhagen. Department of Economics.
  24. Peter Kjær Kruse-Andersen & Peter Birch Sørensen, 2021. "Opimal Unilateral Climate Policy with Carbon Leakage at the Extensive and the Intensive Margin," CESifo Working Paper Series 9185, CESifo.
  25. Peretto, Pietro & Valente, Simone, 2024. "Sustainable Growth and Secular Trends," MPRA Paper 120828, University Library of Munich, Germany.
  26. Barreto, Raul A., 2018. "Fossil fuels, alternative energy and economic growth," Economic Modelling, Elsevier, vol. 75(C), pages 196-220.
  27. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, "undated". "Directed Technological Change and Energy Efficiency Improvements," Climate Change and Sustainable Development 208910, Fondazione Eni Enrico Mattei (FEEM).
  28. Amigues, Jean-Pierre & Moreaux, Michel, 2018. "Competing Land Uses and Fossil Fuel, Optimal Energy Conversion Rates During the Transition Toward a Green Economy Under a Pollution Stock Constraint," TSE Working Papers 18-981, Toulouse School of Economics (TSE).
  29. Chen, Xiaohong & Mao, Yue & Cheng, Jixin & Wei, Ping & Li, Xiaoming, 2024. "Green financial policy, technological advancement reversal, assessment of emission reduction effects," Energy Economics, Elsevier, vol. 136(C).
  30. Christian Haas and Karol Kempa, 2018. "Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.