IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v207y2017icp494-509.html
   My bibliography  Save this item

Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements and the 2°C target

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ren, Kaipeng & Tang, Xu & Höök, Mikael, 2021. "Evaluating metal constraints for photovoltaics: Perspectives from China’s PV development," Applied Energy, Elsevier, vol. 282(PA).
  2. Kim Maya Yavor & Vanessa Bach & Matthias Finkbeiner, 2021. "Resource Assessment of Renewable Energy Systems—A Review," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
  3. Sesini, Marzia & Zwickl-Bernhard, Sebastian & Münchmeyer, Max & Hobbs, Benjamin F., 2025. "Market dynamics and power risks in green technology materials: Platinum under the EU 2030 hydrogen target," Applied Energy, Elsevier, vol. 383(C).
  4. Koji Tokimatsu & Shinsuke Murakami & Tsuyoshi Adachi & Ryota Ii & Rieko Yasuoka & Masahiro Nishio, 2017. "Long-term demand and supply of non-ferrous mineral resources by a mineral balance model," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 30(3), pages 193-206, October.
  5. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
  6. Schlör, H. & Venghaus, S. & Zapp, P. & Marx, J. & Schreiber, A. & Hake, J.-Fr., 2018. "The energy-mineral-society nexus – A social LCA model," Applied Energy, Elsevier, vol. 228(C), pages 999-1008.
  7. Yawen Han & Wanli Xing & Hongchang Hao & Xin Du & Chongyang Liu, 2022. "Interprovincial Metal and GHG Transfers Embodied in Electricity Transmission across China: Trends and Driving Factors," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
  8. Juliana Segura-Salazar & Luís Marcelo Tavares, 2018. "Sustainability in the Minerals Industry: Seeking a Consensus on Its Meaning," Sustainability, MDPI, vol. 10(5), pages 1-38, May.
  9. Islam, Md. Monirul & Sohag, Kazi & Hammoudeh, Shawkat & Mariev, Oleg & Samargandi, Nahla, 2022. "Minerals import demands and clean energy transitions: A disaggregated analysis," Energy Economics, Elsevier, vol. 113(C).
  10. Tessa Lee & Yuan Yao & Thomas E. Graedel & Alessio Miatto, 2024. "Critical material requirements and recycling opportunities for US wind and solar power generation," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 527-541, June.
  11. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  12. Raimund Bleischwitz, 2020. "Mineral resources in the age of climate adaptation and resilience," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 291-299, April.
  13. Qian Ding & Jianbai Huang & Jinyu Chen, 2023. "Time-Frequency Spillovers and the Determinants among Fossil Energy, Clean Energy and Metal Markets," The Energy Journal, , vol. 44(2), pages 259-286, March.
  14. Nyambuu, Unurjargal & Semmler, Willi, 2020. "Climate change and the transition to a low carbon economy – Carbon targets and the carbon budget," Economic Modelling, Elsevier, vol. 84(C), pages 367-376.
  15. Antoine Boubault & Nadia Maïzi, 2019. "Devising Mineral Resource Supply Pathways to a Low-Carbon Electricity Generation by 2100," Resources, MDPI, vol. 8(1), pages 1-13, February.
  16. García-Gusano, Diego & Iribarren, Diego & Muñoz, Iñigo & Arrizabalaga, Eneko & Mabe, Lara & Martín-Gamboa, Mario, 2025. "The future need for critical raw materials associated with long-term energy and climate strategies: The illustrative case study of power generation in Spain," Energy, Elsevier, vol. 314(C).
  17. D’Orazio, Paola, 2024. "Assessing the fiscal implications of changes in critical minerals’ demand in the low-carbon energy transition," Applied Energy, Elsevier, vol. 376(PA).
  18. Md. Monirul Islam, 2024. "A Cross-Country Examination of Mineral Import Demand and Wind Energy Generation: Empirical Insights from Leading Mineral Importers," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 23(1), pages 6-32.
  19. Abdul-Manan, Amir F.N. & Won, Hyun-Woo & Li, Yang & Sarathy, S. Mani & Xie, Xiaomin & Amer, Amer A., 2020. "Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids," Applied Energy, Elsevier, vol. 267(C).
  20. Weiwei Xiong & Katsumasa Tanaka & Philippe Ciais & Liang Yan, 2022. "Evaluating China’s Role in Achieving the 1.5 °C Target of the Paris Agreement," Energies, MDPI, vol. 15(16), pages 1-17, August.
  21. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
  22. Li, Zehong & Wang, Chunying & Chen, Jian, 2024. "Supply and demand of lithium in China based on dynamic material flow analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
  23. Ayami Hayashi & Fuminori Sano & Keigo Akimoto, 2025. "How great will the demand for critical minerals be to meet the 2 °C and 1.5 °C goals? Insights from various technology deployment scenarios," Climatic Change, Springer, vol. 178(5), pages 1-20, May.
  24. Jones, Ben & Elliott, Robert J.R. & Nguyen-Tien, Viet, 2020. "The EV revolution: The road ahead for critical raw materials demand," Applied Energy, Elsevier, vol. 280(C).
  25. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  26. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel & Ascaso, Sonia & Palacios, Jose-Luis, 2018. "Global material requirements for the energy transition. An exergy flow analysis of decarbonisation pathways," Energy, Elsevier, vol. 159(C), pages 1175-1184.
  27. Junne, Tobias & Wulff, Niklas & Breyer, Christian & Naegler, Tobias, 2020. "Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt," Energy, Elsevier, vol. 211(C).
  28. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
  29. Abbas, Shujaat & Sinha, Avik & Saha, Tanaya & Shah, Muhammad Ibrahim, 2023. "Response of mineral market to renewable energy production in the USA: Where lies the sustainable energy future," Energy Policy, Elsevier, vol. 182(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.