IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v162y2016icp308-320.html
   My bibliography  Save this item

Integration of Solid Oxide Electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
  2. Cinti, Giovanni & Frattini, Domenico & Jannelli, Elio & Desideri, Umberto & Bidini, Gianni, 2017. "Coupling Solid Oxide Electrolyser (SOE) and ammonia production plant," Applied Energy, Elsevier, vol. 192(C), pages 466-476.
  3. Ali, Shahid & Sørensen, Kim & Nielsen, Mads P., 2020. "Modeling a novel combined solid oxide electrolysis cell (SOEC) - Biomass gasification renewable methanol production system," Renewable Energy, Elsevier, vol. 154(C), pages 1025-1034.
  4. Morgenthaler, Simon & Kuckshinrichs, Wilhelm & Witthaut, Dirk, 2020. "Optimal system layout and locations for fully renewable high temperature co-electrolysis," Applied Energy, Elsevier, vol. 260(C).
  5. Marchese, Marco & Chesta, Simone & Santarelli, Massimo & Lanzini, Andrea, 2021. "Techno-economic feasibility of a biomass-to-X plant: Fischer-Tropsch wax synthesis from digestate gasification," Energy, Elsevier, vol. 228(C).
  6. Zhang, Hanfei & Desideri, Umberto, 2020. "Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers," Energy, Elsevier, vol. 199(C).
  7. Herz, Gregor & Rix, Christopher & Jacobasch, Eric & Müller, Nils & Reichelt, Erik & Jahn, Matthias & Michaelis, Alexander, 2021. "Economic assessment of Power-to-Liquid processes – Influence of electrolysis technology and operating conditions," Applied Energy, Elsevier, vol. 292(C).
  8. Jin, Jian & Wei, Xin & Liu, Mingkai & Yu, Yuhang & Li, Wenjia & Kong, Hui & Hao, Yong, 2018. "A solar methane reforming reactor design with enhanced efficiency," Applied Energy, Elsevier, vol. 226(C), pages 797-807.
  9. Freire Ordóñez, Diego & Shah, Nilay & Guillén-Gosálbez, Gonzalo, 2021. "Economic and full environmental assessment of electrofuels via electrolysis and co-electrolysis considering externalities," Applied Energy, Elsevier, vol. 286(C).
  10. Polverino, Pierpaolo & Sorrentino, Marco & Pianese, Cesare, 2017. "A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems," Applied Energy, Elsevier, vol. 204(C), pages 1198-1214.
  11. Khasani, & Prasidha, Willie & Widyatama, Arif & Aziz, Muhammad, 2021. "Energy-saving and environmentally-benign integrated ammonia production system," Energy, Elsevier, vol. 235(C).
  12. Herz, Gregor & Reichelt, Erik & Jahn, Matthias, 2018. "Techno-economic analysis of a co-electrolysis-based synthesis process for the production of hydrocarbons," Applied Energy, Elsevier, vol. 215(C), pages 309-320.
  13. Jang, Won-Jun & Jeong, Dae-Woon & Shim, Jae-Oh & Kim, Hak-Min & Roh, Hyun-Seog & Son, In Hyuk & Lee, Seung Jae, 2016. "Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application," Applied Energy, Elsevier, vol. 173(C), pages 80-91.
  14. Frank Labunski & Birte Schnurr & Julia Pössinger & Thomas Götz, 2024. "Environmental Impact of e-Fuels via the Solid Oxide Electrolyzer Cell (SOEC) and Fischer–Tropsch Synthesis (FTS) Route for Use in Germany," Energies, MDPI, vol. 17(5), pages 1-15, February.
  15. Lee, Dong-Young & Mehran, Muhammad Taqi & Kim, Jonghwan & Kim, Sangcho & Lee, Seung-Bok & Song, Rak-Hyun & Ko, Eun-Yong & Hong, Jong-Eun & Huh, Joo-Youl & Lim, Tak-Hyoung, 2020. "Scaling up syngas production with controllable H2/CO ratio in a highly efficient, compact, and durable solid oxide coelectrolysis cell unit-bundle," Applied Energy, Elsevier, vol. 257(C).
  16. Siracusano, Stefania & Baglio, Vincenzo & Van Dijk, Nicholas & Merlo, Luca & Aricò, Antonino Salvatore, 2017. "Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer," Applied Energy, Elsevier, vol. 192(C), pages 477-489.
  17. Xu, Haoran & Chen, Bin & Tan, Peng & Sun, Qiong & Maroto-Valer, M. Mercedes & Ni, Meng, 2019. "Modelling of a hybrid system for on-site power generation from solar fuels," Applied Energy, Elsevier, vol. 240(C), pages 709-718.
  18. Chen, Bin & Xu, Haoran & Ni, Meng, 2017. "Modelling of SOEC-FT reactor: Pressure effects on methanation process," Applied Energy, Elsevier, vol. 185(P1), pages 814-824.
  19. Jalili, Mohammad & Ghazanfari Holagh, Shahriyar & Chitsaz, Ata & Song, Jian & Markides, Christos N., 2023. "Electrolyzer cell-methanation/Sabatier reactors integration for power-to-gas energy storage: Thermo-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 329(C).
  20. Botta, G. & Mor, R. & Patel, H. & Aravind, P.V., 2018. "Thermodynamic evaluation of bi-directional solid oxide cell systems including year-round cumulative exergy analysis," Applied Energy, Elsevier, vol. 226(C), pages 1100-1118.
  21. Lei, Libin & Wang, Yao & Fang, Shumin & Ren, Cong & Liu, Tong & Chen, Fanglin, 2016. "Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide co-electrolysis," Applied Energy, Elsevier, vol. 173(C), pages 52-58.
  22. Wendel, Christopher H. & Braun, Robert J., 2016. "Design and techno-economic analysis of high efficiency reversible solid oxide cell systems for distributed energy storage," Applied Energy, Elsevier, vol. 172(C), pages 118-131.
  23. Kaur, Gurpreet & Kulkarni, Aniruddha P. & Giddey, Sarbjit & Badwal, Sukhvinder P.S., 2018. "Ceramic composite cathodes for CO2 conversion to CO in solid oxide electrolysis cells," Applied Energy, Elsevier, vol. 221(C), pages 131-138.
  24. Simon Pratschner & Martin Hammerschmid & Florian J. Müller & Stefan Müller & Franz Winter, 2022. "Simulation of a Pilot Scale Power-to-Liquid Plant Producing Synthetic Fuel and Wax by Combining Fischer–Tropsch Synthesis and SOEC," Energies, MDPI, vol. 15(11), pages 1-22, June.
  25. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).
  26. Albrecht, Friedemann Georg & Nguyen, Tuong-Van, 2020. "Prospects of electrofuels to defossilize transportation in Denmark – A techno-economic and ecological analysis," Energy, Elsevier, vol. 192(C).
  27. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
  28. Paolo Di Giorgio & Umberto Desideri, 2016. "Potential of Reversible Solid Oxide Cells as Electricity Storage System," Energies, MDPI, vol. 9(8), pages 1-14, August.
  29. Yang, Gaoqiang & Mo, Jingke & Kang, Zhenye & Dohrmann, Yeshi & List, Frederick A. & Green, Johney B. & Babu, Sudarsanam S. & Zhang, Feng-Yuan, 2018. "Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting," Applied Energy, Elsevier, vol. 215(C), pages 202-210.
  30. Jeddizahed, Javad & Webley, Paul A. & Hughes, Thomas J., 2024. "Integrating alkaline electrolysis with oxyfuel combustion for hydrogen and electricity production," Applied Energy, Elsevier, vol. 361(C).
  31. Mehran, Muhammad Taqi & Yu, Seong-Bin & Lee, Dong-Young & Hong, Jong-Eun & Lee, Seung-Bok & Park, Seok-Joo & Song, Rak-Hyun & Lim, Tak-Hyoung, 2018. "Production of syngas from H2O/CO2 by high-pressure coelectrolysis in tubular solid oxide cells," Applied Energy, Elsevier, vol. 212(C), pages 759-770.
  32. Gray, Nathan & O'Shea, Richard & Smyth, Beatrice & Lens, Piet N.L. & Murphy, Jerry D., 2022. "What is the energy balance of electrofuels produced through power-to-fuel integration with biogas facilities?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.