IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v323y2025ics0360544225015166.html
   My bibliography  Save this article

Hydrogen, methane and power tri-generation from coal-based fuels in protonic ceramic fuel cells

Author

Listed:
  • Zhu, Haojie
  • Li, Junbiao
  • Zhang, Yuan
  • Liu, Zhipeng
  • You, Junda
  • Ma, Guoqing
  • Fu, Ling
  • Hao, Senran
  • Yang, Hongxin
  • Zhai, Shuo
  • Wang, Pengfei
  • Zhu, Jing
  • Shen, Suling
  • Chen, Jialiang
  • Teng, Ying
  • Chen, Bin
  • Xie, Heping

Abstract

The traditional utilization of coal fuels is primarily through direct combustion to generate electricity, with low efficiency and significant carbon dioxide emissions conflicting with the goal of carbon neutrality. Here, for the first time, we proposed a novel electrochemical system to achieve the tri-generation of hydrogen, power, and methane from coal-based fuels, with CO2 emission efficiency reduced in tail gas, enabled by protonic ceramic fuel cells (PCFCs) combined with water gasification of coal and CO2 methanation. As demonstrated, the system firstly achieved an enhanced hydrogen production rate of up to 34.8 μmol min−1 g−1 from the syngas produced by coal gasification. Sequentially, the system achieved an excellent peak power density of 868 mW cm−2 at 600 °C in the PCFCs fueled by the syngas, enhanced by a catalytic functional layer (CFL, NiMn@YSZ). In addition, the system is able to produce methane at 6.3 mL min−1 during in-situ CO2 methanation at 500 °C with a current density of 110 mA cm−2. This work introduces a new electrochemical strategy for efficiently utilizing coal to generate electricity and value-added chemicals.

Suggested Citation

  • Zhu, Haojie & Li, Junbiao & Zhang, Yuan & Liu, Zhipeng & You, Junda & Ma, Guoqing & Fu, Ling & Hao, Senran & Yang, Hongxin & Zhai, Shuo & Wang, Pengfei & Zhu, Jing & Shen, Suling & Chen, Jialiang & Te, 2025. "Hydrogen, methane and power tri-generation from coal-based fuels in protonic ceramic fuel cells," Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225015166
    DOI: 10.1016/j.energy.2025.135874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225015166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Xiaoyong & Zhou, Wei & Liang, Fengli & Zhu, Zhonghua, 2013. "A comparative study of different carbon fuels in an electrolyte-supported hybrid direct carbon fuel cell," Applied Energy, Elsevier, vol. 108(C), pages 402-409.
    2. Deng, Jin & Feng, Youneng & Li, Chun & Yuan, Zhaoran & Shang, Ruihang & Yuan, Shenfu, 2024. "Highly efficiency H2 production for real coal tar steam reforming over Ni-ca/H-Al catalyst: Effects of oxygen vacancy, CaO doping and synthesis methods," Applied Energy, Elsevier, vol. 367(C).
    3. Ozalp, N. & Abedini, H. & Abuseada, M. & Davis, R. & Rutten, J. & Verschoren, J. & Ophoff, C. & Moens, D., 2022. "An overview of direct carbon fuel cells and their promising potential on coupling with solar thermochemical carbon production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Liu, Huan & Guo, Wei & Liu, Shuqin, 2022. "Comparative techno-economic performance analysis of underground coal gasification and surface coal gasification based coal-to-hydrogen process," Energy, Elsevier, vol. 258(C).
    5. Yuan Zhang & Bin Chen & Daqin Guan & Meigui Xu & Ran Ran & Meng Ni & Wei Zhou & Ryan O’Hayre & Zongping Shao, 2021. "Thermal-expansion offset for high-performance fuel cell cathodes," Nature, Nature, vol. 591(7849), pages 246-251, March.
    6. Nzihou, Ange & Stanmore, Brian & Sharrock, Patrick, 2013. "A review of catalysts for the gasification of biomass char, with some reference to coal," Energy, Elsevier, vol. 58(C), pages 305-317.
    7. Ahn, Seong Yool & Eom, Seong Yong & Rhie, Young Hoon & Sung, Yon Mo & Moon, Cheor Eon & Choi, Gyung Min & Kim, Duck Jool, 2013. "Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system," Applied Energy, Elsevier, vol. 105(C), pages 207-216.
    8. Xie, Heping & Zhai, Shuo & Chen, Bin & Liu, Tao & Zhang, Yuan & Ni, Meng & Shao, Zongping, 2020. "Coal pretreatment and Ag-infiltrated anode for high-performance hybrid direct coal fuel cell," Applied Energy, Elsevier, vol. 260(C).
    9. Shuo Zhai & Heping Xie & Peng Cui & Daqin Guan & Jian Wang & Siyuan Zhao & Bin Chen & Yufei Song & Zongping Shao & Meng Ni, 2022. "A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells," Nature Energy, Nature, vol. 7(9), pages 866-875, September.
    10. Medina, Oscar E. & Amell, Andrés A. & López, Diana & Santamaría, Alexander, 2025. "Comprehensive review of nickel-based catalysts advancements for CO2 methanation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    11. Greg Muttitt & James Price & Steve Pye & Dan Welsby, 2023. "Socio-political feasibility of coal power phase-out and its role in mitigation pathways," Nature Climate Change, Nature, vol. 13(2), pages 140-147, February.
    12. Cinti, Giovanni & Baldinelli, Arianna & Di Michele, Alessandro & Desideri, Umberto, 2016. "Integration of Solid Oxide Electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel," Applied Energy, Elsevier, vol. 162(C), pages 308-320.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiheng Li & Xin Mao & Desheng Feng & Mengran Li & Xiaoyong Xu & Yadan Luo & Linzhou Zhuang & Rijia Lin & Tianjiu Zhu & Fengli Liang & Zi Huang & Dong Liu & Zifeng Yan & Aijun Du & Zongping Shao & Zho, 2024. "Prediction of perovskite oxygen vacancies for oxygen electrocatalysis at different temperatures," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Cai, Weizi & Zhou, Qian & Xie, Yongmin & Liu, Jiang & Long, Guohui & Cheng, Shuang & Liu, Meilin, 2016. "A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst," Applied Energy, Elsevier, vol. 179(C), pages 1232-1241.
    3. Hongxin Yang & Yuan Zhang & Zhipeng Liu & Chunfang Hu & Junbiao Li & Hailong Liao & Minhua Shao & Meng Ni & Bin Chen & Zongping Shao & Heping Xie, 2025. "Hydration-induced stiffness enabling robust thermal cycling of high temperature fuel cells cathode," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    4. Guo, Liang & Calo, J.M. & Kearney, Clare & Grimshaw, Pengpeng, 2014. "The anodic reaction zone and performance of different carbonaceous fuels in a batch molten hydroxide direct carbon fuel cell," Applied Energy, Elsevier, vol. 129(C), pages 32-38.
    5. Hao, Wenbin & Mi, Yongli, 2016. "Evaluation of waste paper as a source of carbon fuel for hybrid direct carbon fuel cells," Energy, Elsevier, vol. 107(C), pages 122-130.
    6. Hao, Wenbin & He, Xiaojin & Mi, Yongli, 2014. "Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source," Applied Energy, Elsevier, vol. 135(C), pages 174-181.
    7. Polverino, Pierpaolo & Sorrentino, Marco & Pianese, Cesare, 2017. "A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems," Applied Energy, Elsevier, vol. 204(C), pages 1198-1214.
    8. Dupont, Capucine & Jacob, Sylvain & Marrakchy, Khalil Ould & Hognon, Céline & Grateau, Maguelone & Labalette, Françoise & Da Silva Perez, Denilson, 2016. "How inorganic elements of biomass influence char steam gasification kinetics," Energy, Elsevier, vol. 109(C), pages 430-435.
    9. Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Huo, Ruiqiang & Miao, Xiaojun & Cheng, Huiyun & Chen, Derui & Liu, Yu & Zhang, Hu & Wang, Huaiyu & Xue, Nan & Zhu, Hui & Yin, Jiao, 2025. "A highly stable leaf-like Ni/Ca3AlO catalyst for hydrogen production from biomass gasification," Energy, Elsevier, vol. 316(C).
    11. Wang, Xiaorui & Zhang, Qinghe & Yuan, Liang, 2024. "A coupled thermal-force-chemical-displacement multi-field model for underground coal gasification based on controlled retraction injection point technology and its thermal analysis," Energy, Elsevier, vol. 293(C).
    12. Jingchao Sun & Huaizhan Li & Guangli Guo & Yonghua Hu & Chao Tang & Tiening Wang & Hui Zheng & Liangui Zhang & Hang Sun, 2024. "Research on the Correlation Between Overburden Rock Fracture Development and High-Energy Events During Deep Mining in Extremely Thick and Weakly Consolidated Strata for Regional Coal Mining Safety," Sustainability, MDPI, vol. 16(23), pages 1-24, December.
    13. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    14. Wei Li & Jian Liu & Lin Xin & Wei Li & Jianguo Fan & Xianmin Wang & Yan Ma & Weimin Cheng & Jiancai Sui & Maofei Niu, 2025. "Numerical Simulation of Temperature Field Evolution and Distribution Range During Movement of Underground Coal Gasification Working Face," Energies, MDPI, vol. 18(4), pages 1-16, February.
    15. Gao, Juntao & Ma, Dan & Zhao, Hui & Li, Qiang & Lü, Zhe & Wei, Bo, 2022. "Synergistically improving electrocatalytic performance and CO2 tolerance of Fe-based cathode catalysts for solid oxide fuel cells," Energy, Elsevier, vol. 252(C).
    16. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Chen, Yuan & Lin, Weigang & Wu, Hao & Jensen, Peter Arendt & Song, Wenli & Du, Lin & Li, Songgeng, 2021. "Steam gasification of char derived from penicillin mycelial dreg and lignocellulosic biomass: Influence of P, K and Ca on char reactivity," Energy, Elsevier, vol. 228(C).
    18. Anna Trubetskaya, 2022. "Reactivity Effects of Inorganic Content in Biomass Gasification: A Review," Energies, MDPI, vol. 15(9), pages 1-36, April.
    19. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).
    20. Zhang, Yun-Long & Kang, Jia-Ning & Liu, Lan-Cui & Wei, Yi-Ming, 2024. "Unveiling the evolution and future prospects: A comprehensive review of low-carbon transition in the coal power industry," Applied Energy, Elsevier, vol. 371(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225015166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.